![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > elfz5 | Structured version Visualization version GIF version |
Description: Membership in a finite set of sequential integers. (Contributed by NM, 26-Dec-2005.) |
Ref | Expression |
---|---|
elfz5 | ⊢ ((𝐾 ∈ (ℤ≥‘𝑀) ∧ 𝑁 ∈ ℤ) → (𝐾 ∈ (𝑀...𝑁) ↔ 𝐾 ≤ 𝑁)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eluzelz 12868 | . . . 4 ⊢ (𝐾 ∈ (ℤ≥‘𝑀) → 𝐾 ∈ ℤ) | |
2 | eluzel2 12863 | . . . 4 ⊢ (𝐾 ∈ (ℤ≥‘𝑀) → 𝑀 ∈ ℤ) | |
3 | 1, 2 | jca 510 | . . 3 ⊢ (𝐾 ∈ (ℤ≥‘𝑀) → (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) |
4 | elfz 13528 | . . . 4 ⊢ ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 ∈ (𝑀...𝑁) ↔ (𝑀 ≤ 𝐾 ∧ 𝐾 ≤ 𝑁))) | |
5 | 4 | 3expa 1115 | . . 3 ⊢ (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ) ∧ 𝑁 ∈ ℤ) → (𝐾 ∈ (𝑀...𝑁) ↔ (𝑀 ≤ 𝐾 ∧ 𝐾 ≤ 𝑁))) |
6 | 3, 5 | sylan 578 | . 2 ⊢ ((𝐾 ∈ (ℤ≥‘𝑀) ∧ 𝑁 ∈ ℤ) → (𝐾 ∈ (𝑀...𝑁) ↔ (𝑀 ≤ 𝐾 ∧ 𝐾 ≤ 𝑁))) |
7 | eluzle 12871 | . . . 4 ⊢ (𝐾 ∈ (ℤ≥‘𝑀) → 𝑀 ≤ 𝐾) | |
8 | 7 | biantrurd 531 | . . 3 ⊢ (𝐾 ∈ (ℤ≥‘𝑀) → (𝐾 ≤ 𝑁 ↔ (𝑀 ≤ 𝐾 ∧ 𝐾 ≤ 𝑁))) |
9 | 8 | adantr 479 | . 2 ⊢ ((𝐾 ∈ (ℤ≥‘𝑀) ∧ 𝑁 ∈ ℤ) → (𝐾 ≤ 𝑁 ↔ (𝑀 ≤ 𝐾 ∧ 𝐾 ≤ 𝑁))) |
10 | 6, 9 | bitr4d 281 | 1 ⊢ ((𝐾 ∈ (ℤ≥‘𝑀) ∧ 𝑁 ∈ ℤ) → (𝐾 ∈ (𝑀...𝑁) ↔ 𝐾 ≤ 𝑁)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 394 ∈ wcel 2098 class class class wbr 5150 ‘cfv 6551 (class class class)co 7424 ≤ cle 11285 ℤcz 12594 ℤ≥cuz 12858 ...cfz 13522 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2698 ax-sep 5301 ax-nul 5308 ax-pr 5431 ax-cnex 11200 ax-resscn 11201 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ral 3058 df-rex 3067 df-rab 3429 df-v 3473 df-sbc 3777 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4325 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4911 df-br 5151 df-opab 5213 df-mpt 5234 df-id 5578 df-xp 5686 df-rel 5687 df-cnv 5688 df-co 5689 df-dm 5690 df-rn 5691 df-res 5692 df-ima 5693 df-iota 6503 df-fun 6553 df-fn 6554 df-f 6555 df-fv 6559 df-ov 7427 df-oprab 7428 df-mpo 7429 df-neg 11483 df-z 12595 df-uz 12859 df-fz 13523 |
This theorem is referenced by: fzsplit2 13564 fznn0sub2 13646 predfz 13664 bcval5 14315 hashf1 14456 seqcoll 14463 limsupgre 15463 isercolllem2 15650 isercoll 15652 fsumcvg3 15713 fsum0diaglem 15760 climcndslem2 15834 mertenslem1 15868 ncoprmlnprm 16705 pcfac 16873 prmreclem2 16891 prmreclem3 16892 prmreclem5 16894 1arith 16901 vdwlem1 16955 vdwlem3 16957 vdwlem10 16964 sylow1lem1 19558 psrbaglefi 21870 psrbaglefiOLD 21871 ovoliunlem1 25449 ovolicc2lem4 25467 uniioombllem3 25532 mbfi1fseqlem3 25665 plyeq0lem 26162 coeeulem 26176 coeidlem 26189 coeid3 26192 coeeq2 26194 coemulhi 26206 vieta1lem2 26264 birthdaylem2 26902 birthdaylem3 26903 ftalem5 27027 basellem2 27032 basellem3 27033 basellem5 27035 musum 27141 fsumvma2 27165 chpchtsum 27170 lgsne0 27286 lgsquadlem2 27332 rplogsumlem2 27436 dchrisumlem1 27440 dchrisum0lem1 27467 ostth2lem3 27586 eupth2lems 30066 fzsplit3 32580 eulerpartlems 33985 eulerpartlemb 33993 erdszelem7 34812 cvmliftlem7 34906 |
Copyright terms: Public domain | W3C validator |