MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fsumvma2 Structured version   Visualization version   GIF version

Theorem fsumvma2 27184
Description: Apply fsumvma 27183 for the common case of all numbers less than a real number 𝐴. (Contributed by Mario Carneiro, 30-Apr-2016.)
Hypotheses
Ref Expression
fsumvma2.1 (𝑥 = (𝑝𝑘) → 𝐵 = 𝐶)
fsumvma2.2 (𝜑𝐴 ∈ ℝ)
fsumvma2.3 ((𝜑𝑥 ∈ (1...(⌊‘𝐴))) → 𝐵 ∈ ℂ)
fsumvma2.4 ((𝜑 ∧ (𝑥 ∈ (1...(⌊‘𝐴)) ∧ (Λ‘𝑥) = 0)) → 𝐵 = 0)
Assertion
Ref Expression
fsumvma2 (𝜑 → Σ𝑥 ∈ (1...(⌊‘𝐴))𝐵 = Σ𝑝 ∈ ((0[,]𝐴) ∩ ℙ)Σ𝑘 ∈ (1...(⌊‘((log‘𝐴) / (log‘𝑝))))𝐶)
Distinct variable groups:   𝑘,𝑝,𝑥,𝐴   𝑥,𝐶   𝜑,𝑘,𝑝,𝑥   𝐵,𝑘,𝑝
Allowed substitution hints:   𝐵(𝑥)   𝐶(𝑘,𝑝)

Proof of Theorem fsumvma2
StepHypRef Expression
1 fsumvma2.1 . 2 (𝑥 = (𝑝𝑘) → 𝐵 = 𝐶)
2 fzfid 13971 . 2 (𝜑 → (1...(⌊‘𝐴)) ∈ Fin)
3 fz1ssnn 13564 . . 3 (1...(⌊‘𝐴)) ⊆ ℕ
43a1i 11 . 2 (𝜑 → (1...(⌊‘𝐴)) ⊆ ℕ)
5 fsumvma2.2 . . 3 (𝜑𝐴 ∈ ℝ)
6 ppifi 27075 . . 3 (𝐴 ∈ ℝ → ((0[,]𝐴) ∩ ℙ) ∈ Fin)
75, 6syl 17 . 2 (𝜑 → ((0[,]𝐴) ∩ ℙ) ∈ Fin)
8 elinel2 4195 . . . . 5 (𝑝 ∈ ((0[,]𝐴) ∩ ℙ) → 𝑝 ∈ ℙ)
9 elfznn 13562 . . . . 5 (𝑘 ∈ (1...(⌊‘((log‘𝐴) / (log‘𝑝)))) → 𝑘 ∈ ℕ)
108, 9anim12i 611 . . . 4 ((𝑝 ∈ ((0[,]𝐴) ∩ ℙ) ∧ 𝑘 ∈ (1...(⌊‘((log‘𝐴) / (log‘𝑝))))) → (𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ))
1110pm4.71ri 559 . . 3 ((𝑝 ∈ ((0[,]𝐴) ∩ ℙ) ∧ 𝑘 ∈ (1...(⌊‘((log‘𝐴) / (log‘𝑝))))) ↔ ((𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ) ∧ (𝑝 ∈ ((0[,]𝐴) ∩ ℙ) ∧ 𝑘 ∈ (1...(⌊‘((log‘𝐴) / (log‘𝑝)))))))
125adantr 479 . . . . . 6 ((𝜑 ∧ (𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ)) → 𝐴 ∈ ℝ)
13 prmnn 16645 . . . . . . . . 9 (𝑝 ∈ ℙ → 𝑝 ∈ ℕ)
1413ad2antrl 726 . . . . . . . 8 ((𝜑 ∧ (𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ)) → 𝑝 ∈ ℕ)
15 nnnn0 12509 . . . . . . . . 9 (𝑘 ∈ ℕ → 𝑘 ∈ ℕ0)
1615ad2antll 727 . . . . . . . 8 ((𝜑 ∧ (𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ)) → 𝑘 ∈ ℕ0)
1714, 16nnexpcld 14240 . . . . . . 7 ((𝜑 ∧ (𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ)) → (𝑝𝑘) ∈ ℕ)
1817nnzd 12615 . . . . . 6 ((𝜑 ∧ (𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ)) → (𝑝𝑘) ∈ ℤ)
19 flge 13803 . . . . . 6 ((𝐴 ∈ ℝ ∧ (𝑝𝑘) ∈ ℤ) → ((𝑝𝑘) ≤ 𝐴 ↔ (𝑝𝑘) ≤ (⌊‘𝐴)))
2012, 18, 19syl2anc 582 . . . . 5 ((𝜑 ∧ (𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ)) → ((𝑝𝑘) ≤ 𝐴 ↔ (𝑝𝑘) ≤ (⌊‘𝐴)))
21 simplrl 775 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ)) ∧ 𝑝 ∈ (0[,]𝐴)) → 𝑝 ∈ ℙ)
2221, 13syl 17 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ)) ∧ 𝑝 ∈ (0[,]𝐴)) → 𝑝 ∈ ℕ)
2322nnrpd 13046 . . . . . . . . . . 11 (((𝜑 ∧ (𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ)) ∧ 𝑝 ∈ (0[,]𝐴)) → 𝑝 ∈ ℝ+)
24 simplrr 776 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ)) ∧ 𝑝 ∈ (0[,]𝐴)) → 𝑘 ∈ ℕ)
2524nnzd 12615 . . . . . . . . . . 11 (((𝜑 ∧ (𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ)) ∧ 𝑝 ∈ (0[,]𝐴)) → 𝑘 ∈ ℤ)
26 relogexp 26567 . . . . . . . . . . 11 ((𝑝 ∈ ℝ+𝑘 ∈ ℤ) → (log‘(𝑝𝑘)) = (𝑘 · (log‘𝑝)))
2723, 25, 26syl2anc 582 . . . . . . . . . 10 (((𝜑 ∧ (𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ)) ∧ 𝑝 ∈ (0[,]𝐴)) → (log‘(𝑝𝑘)) = (𝑘 · (log‘𝑝)))
2827breq1d 5158 . . . . . . . . 9 (((𝜑 ∧ (𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ)) ∧ 𝑝 ∈ (0[,]𝐴)) → ((log‘(𝑝𝑘)) ≤ (log‘𝐴) ↔ (𝑘 · (log‘𝑝)) ≤ (log‘𝐴)))
2924nnred 12257 . . . . . . . . . 10 (((𝜑 ∧ (𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ)) ∧ 𝑝 ∈ (0[,]𝐴)) → 𝑘 ∈ ℝ)
3012adantr 479 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ)) ∧ 𝑝 ∈ (0[,]𝐴)) → 𝐴 ∈ ℝ)
31 0red 11247 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ)) ∧ 𝑝 ∈ (0[,]𝐴)) → 0 ∈ ℝ)
3214nnred 12257 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ)) → 𝑝 ∈ ℝ)
3332adantr 479 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ)) ∧ 𝑝 ∈ (0[,]𝐴)) → 𝑝 ∈ ℝ)
3422nngt0d 12291 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ)) ∧ 𝑝 ∈ (0[,]𝐴)) → 0 < 𝑝)
35 0red 11247 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ)) → 0 ∈ ℝ)
3614nnnn0d 12562 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ)) → 𝑝 ∈ ℕ0)
3736nn0ge0d 12565 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ)) → 0 ≤ 𝑝)
38 elicc2 13421 . . . . . . . . . . . . . . . . 17 ((0 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (𝑝 ∈ (0[,]𝐴) ↔ (𝑝 ∈ ℝ ∧ 0 ≤ 𝑝𝑝𝐴)))
39 df-3an 1086 . . . . . . . . . . . . . . . . 17 ((𝑝 ∈ ℝ ∧ 0 ≤ 𝑝𝑝𝐴) ↔ ((𝑝 ∈ ℝ ∧ 0 ≤ 𝑝) ∧ 𝑝𝐴))
4038, 39bitrdi 286 . . . . . . . . . . . . . . . 16 ((0 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (𝑝 ∈ (0[,]𝐴) ↔ ((𝑝 ∈ ℝ ∧ 0 ≤ 𝑝) ∧ 𝑝𝐴)))
4140baibd 538 . . . . . . . . . . . . . . 15 (((0 ∈ ℝ ∧ 𝐴 ∈ ℝ) ∧ (𝑝 ∈ ℝ ∧ 0 ≤ 𝑝)) → (𝑝 ∈ (0[,]𝐴) ↔ 𝑝𝐴))
4235, 12, 32, 37, 41syl22anc 837 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ)) → (𝑝 ∈ (0[,]𝐴) ↔ 𝑝𝐴))
4342biimpa 475 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ)) ∧ 𝑝 ∈ (0[,]𝐴)) → 𝑝𝐴)
4431, 33, 30, 34, 43ltletrd 11404 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ)) ∧ 𝑝 ∈ (0[,]𝐴)) → 0 < 𝐴)
4530, 44elrpd 13045 . . . . . . . . . . 11 (((𝜑 ∧ (𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ)) ∧ 𝑝 ∈ (0[,]𝐴)) → 𝐴 ∈ ℝ+)
4645relogcld 26594 . . . . . . . . . 10 (((𝜑 ∧ (𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ)) ∧ 𝑝 ∈ (0[,]𝐴)) → (log‘𝐴) ∈ ℝ)
47 prmuz2 16667 . . . . . . . . . . 11 (𝑝 ∈ ℙ → 𝑝 ∈ (ℤ‘2))
48 eluzelre 12863 . . . . . . . . . . . 12 (𝑝 ∈ (ℤ‘2) → 𝑝 ∈ ℝ)
49 eluz2gt1 12934 . . . . . . . . . . . 12 (𝑝 ∈ (ℤ‘2) → 1 < 𝑝)
5048, 49rplogcld 26600 . . . . . . . . . . 11 (𝑝 ∈ (ℤ‘2) → (log‘𝑝) ∈ ℝ+)
5121, 47, 503syl 18 . . . . . . . . . 10 (((𝜑 ∧ (𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ)) ∧ 𝑝 ∈ (0[,]𝐴)) → (log‘𝑝) ∈ ℝ+)
5229, 46, 51lemuldivd 13097 . . . . . . . . 9 (((𝜑 ∧ (𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ)) ∧ 𝑝 ∈ (0[,]𝐴)) → ((𝑘 · (log‘𝑝)) ≤ (log‘𝐴) ↔ 𝑘 ≤ ((log‘𝐴) / (log‘𝑝))))
5346, 51rerpdivcld 13079 . . . . . . . . . 10 (((𝜑 ∧ (𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ)) ∧ 𝑝 ∈ (0[,]𝐴)) → ((log‘𝐴) / (log‘𝑝)) ∈ ℝ)
54 flge 13803 . . . . . . . . . 10 ((((log‘𝐴) / (log‘𝑝)) ∈ ℝ ∧ 𝑘 ∈ ℤ) → (𝑘 ≤ ((log‘𝐴) / (log‘𝑝)) ↔ 𝑘 ≤ (⌊‘((log‘𝐴) / (log‘𝑝)))))
5553, 25, 54syl2anc 582 . . . . . . . . 9 (((𝜑 ∧ (𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ)) ∧ 𝑝 ∈ (0[,]𝐴)) → (𝑘 ≤ ((log‘𝐴) / (log‘𝑝)) ↔ 𝑘 ≤ (⌊‘((log‘𝐴) / (log‘𝑝)))))
5628, 52, 553bitrd 304 . . . . . . . 8 (((𝜑 ∧ (𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ)) ∧ 𝑝 ∈ (0[,]𝐴)) → ((log‘(𝑝𝑘)) ≤ (log‘𝐴) ↔ 𝑘 ≤ (⌊‘((log‘𝐴) / (log‘𝑝)))))
5717adantr 479 . . . . . . . . . 10 (((𝜑 ∧ (𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ)) ∧ 𝑝 ∈ (0[,]𝐴)) → (𝑝𝑘) ∈ ℕ)
5857nnrpd 13046 . . . . . . . . 9 (((𝜑 ∧ (𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ)) ∧ 𝑝 ∈ (0[,]𝐴)) → (𝑝𝑘) ∈ ℝ+)
5958, 45logled 26598 . . . . . . . 8 (((𝜑 ∧ (𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ)) ∧ 𝑝 ∈ (0[,]𝐴)) → ((𝑝𝑘) ≤ 𝐴 ↔ (log‘(𝑝𝑘)) ≤ (log‘𝐴)))
60 simprr 771 . . . . . . . . . . 11 ((𝜑 ∧ (𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ)) → 𝑘 ∈ ℕ)
61 nnuz 12895 . . . . . . . . . . 11 ℕ = (ℤ‘1)
6260, 61eleqtrdi 2835 . . . . . . . . . 10 ((𝜑 ∧ (𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ)) → 𝑘 ∈ (ℤ‘1))
6362adantr 479 . . . . . . . . 9 (((𝜑 ∧ (𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ)) ∧ 𝑝 ∈ (0[,]𝐴)) → 𝑘 ∈ (ℤ‘1))
6453flcld 13796 . . . . . . . . 9 (((𝜑 ∧ (𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ)) ∧ 𝑝 ∈ (0[,]𝐴)) → (⌊‘((log‘𝐴) / (log‘𝑝))) ∈ ℤ)
65 elfz5 13525 . . . . . . . . 9 ((𝑘 ∈ (ℤ‘1) ∧ (⌊‘((log‘𝐴) / (log‘𝑝))) ∈ ℤ) → (𝑘 ∈ (1...(⌊‘((log‘𝐴) / (log‘𝑝)))) ↔ 𝑘 ≤ (⌊‘((log‘𝐴) / (log‘𝑝)))))
6663, 64, 65syl2anc 582 . . . . . . . 8 (((𝜑 ∧ (𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ)) ∧ 𝑝 ∈ (0[,]𝐴)) → (𝑘 ∈ (1...(⌊‘((log‘𝐴) / (log‘𝑝)))) ↔ 𝑘 ≤ (⌊‘((log‘𝐴) / (log‘𝑝)))))
6756, 59, 663bitr4d 310 . . . . . . 7 (((𝜑 ∧ (𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ)) ∧ 𝑝 ∈ (0[,]𝐴)) → ((𝑝𝑘) ≤ 𝐴𝑘 ∈ (1...(⌊‘((log‘𝐴) / (log‘𝑝))))))
6867pm5.32da 577 . . . . . 6 ((𝜑 ∧ (𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ)) → ((𝑝 ∈ (0[,]𝐴) ∧ (𝑝𝑘) ≤ 𝐴) ↔ (𝑝 ∈ (0[,]𝐴) ∧ 𝑘 ∈ (1...(⌊‘((log‘𝐴) / (log‘𝑝)))))))
6914nncnd 12258 . . . . . . . . . . 11 ((𝜑 ∧ (𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ)) → 𝑝 ∈ ℂ)
7069exp1d 14138 . . . . . . . . . 10 ((𝜑 ∧ (𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ)) → (𝑝↑1) = 𝑝)
7114nnge1d 12290 . . . . . . . . . . 11 ((𝜑 ∧ (𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ)) → 1 ≤ 𝑝)
7232, 71, 62leexp2ad 14249 . . . . . . . . . 10 ((𝜑 ∧ (𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ)) → (𝑝↑1) ≤ (𝑝𝑘))
7370, 72eqbrtrrd 5172 . . . . . . . . 9 ((𝜑 ∧ (𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ)) → 𝑝 ≤ (𝑝𝑘))
7417nnred 12257 . . . . . . . . . 10 ((𝜑 ∧ (𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ)) → (𝑝𝑘) ∈ ℝ)
75 letr 11338 . . . . . . . . . 10 ((𝑝 ∈ ℝ ∧ (𝑝𝑘) ∈ ℝ ∧ 𝐴 ∈ ℝ) → ((𝑝 ≤ (𝑝𝑘) ∧ (𝑝𝑘) ≤ 𝐴) → 𝑝𝐴))
7632, 74, 12, 75syl3anc 1368 . . . . . . . . 9 ((𝜑 ∧ (𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ)) → ((𝑝 ≤ (𝑝𝑘) ∧ (𝑝𝑘) ≤ 𝐴) → 𝑝𝐴))
7773, 76mpand 693 . . . . . . . 8 ((𝜑 ∧ (𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ)) → ((𝑝𝑘) ≤ 𝐴𝑝𝐴))
7877, 42sylibrd 258 . . . . . . 7 ((𝜑 ∧ (𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ)) → ((𝑝𝑘) ≤ 𝐴𝑝 ∈ (0[,]𝐴)))
7978pm4.71rd 561 . . . . . 6 ((𝜑 ∧ (𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ)) → ((𝑝𝑘) ≤ 𝐴 ↔ (𝑝 ∈ (0[,]𝐴) ∧ (𝑝𝑘) ≤ 𝐴)))
80 elin 3961 . . . . . . . . 9 (𝑝 ∈ ((0[,]𝐴) ∩ ℙ) ↔ (𝑝 ∈ (0[,]𝐴) ∧ 𝑝 ∈ ℙ))
8180rbaib 537 . . . . . . . 8 (𝑝 ∈ ℙ → (𝑝 ∈ ((0[,]𝐴) ∩ ℙ) ↔ 𝑝 ∈ (0[,]𝐴)))
8281ad2antrl 726 . . . . . . 7 ((𝜑 ∧ (𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ)) → (𝑝 ∈ ((0[,]𝐴) ∩ ℙ) ↔ 𝑝 ∈ (0[,]𝐴)))
8382anbi1d 629 . . . . . 6 ((𝜑 ∧ (𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ)) → ((𝑝 ∈ ((0[,]𝐴) ∩ ℙ) ∧ 𝑘 ∈ (1...(⌊‘((log‘𝐴) / (log‘𝑝))))) ↔ (𝑝 ∈ (0[,]𝐴) ∧ 𝑘 ∈ (1...(⌊‘((log‘𝐴) / (log‘𝑝)))))))
8468, 79, 833bitr4rd 311 . . . . 5 ((𝜑 ∧ (𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ)) → ((𝑝 ∈ ((0[,]𝐴) ∩ ℙ) ∧ 𝑘 ∈ (1...(⌊‘((log‘𝐴) / (log‘𝑝))))) ↔ (𝑝𝑘) ≤ 𝐴))
8517, 61eleqtrdi 2835 . . . . . 6 ((𝜑 ∧ (𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ)) → (𝑝𝑘) ∈ (ℤ‘1))
8612flcld 13796 . . . . . 6 ((𝜑 ∧ (𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ)) → (⌊‘𝐴) ∈ ℤ)
87 elfz5 13525 . . . . . 6 (((𝑝𝑘) ∈ (ℤ‘1) ∧ (⌊‘𝐴) ∈ ℤ) → ((𝑝𝑘) ∈ (1...(⌊‘𝐴)) ↔ (𝑝𝑘) ≤ (⌊‘𝐴)))
8885, 86, 87syl2anc 582 . . . . 5 ((𝜑 ∧ (𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ)) → ((𝑝𝑘) ∈ (1...(⌊‘𝐴)) ↔ (𝑝𝑘) ≤ (⌊‘𝐴)))
8920, 84, 883bitr4d 310 . . . 4 ((𝜑 ∧ (𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ)) → ((𝑝 ∈ ((0[,]𝐴) ∩ ℙ) ∧ 𝑘 ∈ (1...(⌊‘((log‘𝐴) / (log‘𝑝))))) ↔ (𝑝𝑘) ∈ (1...(⌊‘𝐴))))
9089pm5.32da 577 . . 3 (𝜑 → (((𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ) ∧ (𝑝 ∈ ((0[,]𝐴) ∩ ℙ) ∧ 𝑘 ∈ (1...(⌊‘((log‘𝐴) / (log‘𝑝)))))) ↔ ((𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ) ∧ (𝑝𝑘) ∈ (1...(⌊‘𝐴)))))
9111, 90bitrid 282 . 2 (𝜑 → ((𝑝 ∈ ((0[,]𝐴) ∩ ℙ) ∧ 𝑘 ∈ (1...(⌊‘((log‘𝐴) / (log‘𝑝))))) ↔ ((𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ) ∧ (𝑝𝑘) ∈ (1...(⌊‘𝐴)))))
92 fsumvma2.3 . 2 ((𝜑𝑥 ∈ (1...(⌊‘𝐴))) → 𝐵 ∈ ℂ)
93 fsumvma2.4 . 2 ((𝜑 ∧ (𝑥 ∈ (1...(⌊‘𝐴)) ∧ (Λ‘𝑥) = 0)) → 𝐵 = 0)
941, 2, 4, 7, 91, 92, 93fsumvma 27183 1 (𝜑 → Σ𝑥 ∈ (1...(⌊‘𝐴))𝐵 = Σ𝑝 ∈ ((0[,]𝐴) ∩ ℙ)Σ𝑘 ∈ (1...(⌊‘((log‘𝐴) / (log‘𝑝))))𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394  w3a 1084   = wceq 1533  wcel 2098  cin 3944  wss 3945   class class class wbr 5148  cfv 6547  (class class class)co 7417  Fincfn 8962  cc 11136  cr 11137  0cc0 11138  1c1 11139   · cmul 11143  cle 11279   / cdiv 11901  cn 12242  2c2 12297  0cn0 12502  cz 12588  cuz 12852  +crp 13006  [,]cicc 13359  ...cfz 13516  cfl 13788  cexp 14059  Σcsu 15665  cprime 16642  logclog 26525  Λcvma 27061
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5364  ax-pr 5428  ax-un 7739  ax-inf2 9664  ax-cnex 11194  ax-resscn 11195  ax-1cn 11196  ax-icn 11197  ax-addcl 11198  ax-addrcl 11199  ax-mulcl 11200  ax-mulrcl 11201  ax-mulcom 11202  ax-addass 11203  ax-mulass 11204  ax-distr 11205  ax-i2m1 11206  ax-1ne0 11207  ax-1rid 11208  ax-rnegex 11209  ax-rrecex 11210  ax-cnre 11211  ax-pre-lttri 11212  ax-pre-lttrn 11213  ax-pre-ltadd 11214  ax-pre-mulgt0 11215  ax-pre-sup 11216  ax-addf 11217
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3364  df-reu 3365  df-rab 3420  df-v 3465  df-sbc 3775  df-csb 3891  df-dif 3948  df-un 3950  df-in 3952  df-ss 3962  df-pss 3965  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-tp 4634  df-op 4636  df-uni 4909  df-int 4950  df-iun 4998  df-iin 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5575  df-eprel 5581  df-po 5589  df-so 5590  df-fr 5632  df-se 5633  df-we 5634  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-pred 6305  df-ord 6372  df-on 6373  df-lim 6374  df-suc 6375  df-iota 6499  df-fun 6549  df-fn 6550  df-f 6551  df-f1 6552  df-fo 6553  df-f1o 6554  df-fv 6555  df-isom 6556  df-riota 7373  df-ov 7420  df-oprab 7421  df-mpo 7422  df-of 7683  df-om 7870  df-1st 7992  df-2nd 7993  df-supp 8164  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-1o 8485  df-2o 8486  df-oadd 8489  df-er 8723  df-map 8845  df-pm 8846  df-ixp 8915  df-en 8963  df-dom 8964  df-sdom 8965  df-fin 8966  df-fsupp 9386  df-fi 9434  df-sup 9465  df-inf 9466  df-oi 9533  df-dju 9924  df-card 9962  df-pnf 11280  df-mnf 11281  df-xr 11282  df-ltxr 11283  df-le 11284  df-sub 11476  df-neg 11477  df-div 11902  df-nn 12243  df-2 12305  df-3 12306  df-4 12307  df-5 12308  df-6 12309  df-7 12310  df-8 12311  df-9 12312  df-n0 12503  df-z 12589  df-dec 12708  df-uz 12853  df-q 12963  df-rp 13007  df-xneg 13124  df-xadd 13125  df-xmul 13126  df-ioo 13360  df-ioc 13361  df-ico 13362  df-icc 13363  df-fz 13517  df-fzo 13660  df-fl 13790  df-mod 13868  df-seq 14000  df-exp 14060  df-fac 14266  df-bc 14295  df-hash 14323  df-shft 15047  df-cj 15079  df-re 15080  df-im 15081  df-sqrt 15215  df-abs 15216  df-limsup 15448  df-clim 15465  df-rlim 15466  df-sum 15666  df-ef 16044  df-sin 16046  df-cos 16047  df-pi 16049  df-dvds 16232  df-gcd 16470  df-prm 16643  df-pc 16806  df-struct 17116  df-sets 17133  df-slot 17151  df-ndx 17163  df-base 17181  df-ress 17210  df-plusg 17246  df-mulr 17247  df-starv 17248  df-sca 17249  df-vsca 17250  df-ip 17251  df-tset 17252  df-ple 17253  df-ds 17255  df-unif 17256  df-hom 17257  df-cco 17258  df-rest 17404  df-topn 17405  df-0g 17423  df-gsum 17424  df-topgen 17425  df-pt 17426  df-prds 17429  df-xrs 17484  df-qtop 17489  df-imas 17490  df-xps 17492  df-mre 17566  df-mrc 17567  df-acs 17569  df-mgm 18600  df-sgrp 18679  df-mnd 18695  df-submnd 18741  df-mulg 19029  df-cntz 19276  df-cmn 19745  df-psmet 21282  df-xmet 21283  df-met 21284  df-bl 21285  df-mopn 21286  df-fbas 21287  df-fg 21288  df-cnfld 21291  df-top 22833  df-topon 22850  df-topsp 22872  df-bases 22886  df-cld 22960  df-ntr 22961  df-cls 22962  df-nei 23039  df-lp 23077  df-perf 23078  df-cn 23168  df-cnp 23169  df-haus 23256  df-tx 23503  df-hmeo 23696  df-fil 23787  df-fm 23879  df-flim 23880  df-flf 23881  df-xms 24263  df-ms 24264  df-tms 24265  df-cncf 24835  df-limc 25832  df-dv 25833  df-log 26527  df-vma 27067
This theorem is referenced by:  chpval2  27188  rplogsumlem2  27455  rpvmasumlem  27457
  Copyright terms: Public domain W3C validator
OSZAR »