![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > exp1d | Structured version Visualization version GIF version |
Description: Value of a complex number raised to the first power. (Contributed by Mario Carneiro, 28-May-2016.) |
Ref | Expression |
---|---|
expcld.1 | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
Ref | Expression |
---|---|
exp1d | ⊢ (𝜑 → (𝐴↑1) = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | expcld.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
2 | exp1 14072 | . 2 ⊢ (𝐴 ∈ ℂ → (𝐴↑1) = 𝐴) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → (𝐴↑1) = 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1533 ∈ wcel 2098 (class class class)co 7426 ℂcc 11144 1c1 11147 ↑cexp 14066 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2699 ax-sep 5303 ax-nul 5310 ax-pow 5369 ax-pr 5433 ax-un 7746 ax-cnex 11202 ax-resscn 11203 ax-1cn 11204 ax-icn 11205 ax-addcl 11206 ax-addrcl 11207 ax-mulcl 11208 ax-mulrcl 11209 ax-mulcom 11210 ax-addass 11211 ax-mulass 11212 ax-distr 11213 ax-i2m1 11214 ax-1ne0 11215 ax-1rid 11216 ax-rnegex 11217 ax-rrecex 11218 ax-cnre 11219 ax-pre-lttri 11220 ax-pre-lttrn 11221 ax-pre-ltadd 11222 ax-pre-mulgt0 11223 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2529 df-eu 2558 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-reu 3375 df-rab 3431 df-v 3475 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4327 df-if 4533 df-pw 4608 df-sn 4633 df-pr 4635 df-op 4639 df-uni 4913 df-iun 5002 df-br 5153 df-opab 5215 df-mpt 5236 df-tr 5270 df-id 5580 df-eprel 5586 df-po 5594 df-so 5595 df-fr 5637 df-we 5639 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-rn 5693 df-res 5694 df-ima 5695 df-pred 6310 df-ord 6377 df-on 6378 df-lim 6379 df-suc 6380 df-iota 6505 df-fun 6555 df-fn 6556 df-f 6557 df-f1 6558 df-fo 6559 df-f1o 6560 df-fv 6561 df-riota 7382 df-ov 7429 df-oprab 7430 df-mpo 7431 df-om 7877 df-2nd 8000 df-frecs 8293 df-wrecs 8324 df-recs 8398 df-rdg 8437 df-er 8731 df-en 8971 df-dom 8972 df-sdom 8973 df-pnf 11288 df-mnf 11289 df-xr 11290 df-ltxr 11291 df-le 11292 df-sub 11484 df-neg 11485 df-nn 12251 df-n0 12511 df-z 12597 df-uz 12861 df-seq 14007 df-exp 14067 |
This theorem is referenced by: faclbnd4lem1 14292 fsumcube 16044 sin01gt0 16174 rplpwr 16540 prmdvdsexp 16693 phiprm 16753 eulerthlem2 16758 pcelnn 16846 expnprm 16878 prmpwdvds 16880 pockthg 16882 odcau 19566 plyco 26195 dgrcolem1 26228 vieta1 26267 taylthlem1 26328 ftalem2 27026 vmaprm 27069 vma1 27118 1sgmprm 27152 chtublem 27164 fsumvma2 27167 chpchtsum 27172 logfacrlim2 27179 bposlem2 27238 bposlem6 27242 lgsval2lem 27260 2sqblem 27384 chebbnd1lem1 27422 rplogsumlem2 27438 rpvmasumlem 27440 ostth3 27591 nn0prpwlem 35839 nn0prpw 35840 bfplem1 37328 dvrelogpow2b 41571 aks4d1p1p4 41574 aks4d1p1p7 41577 aks4d1p1p5 41578 aks4d1p1 41579 aks4d1p3 41581 aks4d1p8d2 41588 aks6d1c1p8 41618 2ap1caineq 41649 aks6d1c7 41688 fltnltalem 42117 fltnlta 42118 3cubeslem3r 42138 rmxy1 42374 jm2.18 42440 jm2.23 42448 jm3.1lem2 42470 areaquad 42675 radcnvrat 43782 stoweidlem3 45420 wallispilem2 45483 stirlinglem1 45491 stirlinglem7 45497 stirlinglem10 45500 lighneal 46980 blenpw2m1 47730 |
Copyright terms: Public domain | W3C validator |