MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  phiprm Structured version   Visualization version   GIF version

Theorem phiprm 16755
Description: Value of the Euler ϕ function at a prime. (Contributed by Mario Carneiro, 28-Feb-2014.)
Assertion
Ref Expression
phiprm (𝑃 ∈ ℙ → (ϕ‘𝑃) = (𝑃 − 1))

Proof of Theorem phiprm
StepHypRef Expression
1 1nn 12263 . . 3 1 ∈ ℕ
2 phiprmpw 16754 . . 3 ((𝑃 ∈ ℙ ∧ 1 ∈ ℕ) → (ϕ‘(𝑃↑1)) = ((𝑃↑(1 − 1)) · (𝑃 − 1)))
31, 2mpan2 689 . 2 (𝑃 ∈ ℙ → (ϕ‘(𝑃↑1)) = ((𝑃↑(1 − 1)) · (𝑃 − 1)))
4 prmz 16655 . . . . 5 (𝑃 ∈ ℙ → 𝑃 ∈ ℤ)
54zcnd 12707 . . . 4 (𝑃 ∈ ℙ → 𝑃 ∈ ℂ)
65exp1d 14147 . . 3 (𝑃 ∈ ℙ → (𝑃↑1) = 𝑃)
76fveq2d 6906 . 2 (𝑃 ∈ ℙ → (ϕ‘(𝑃↑1)) = (ϕ‘𝑃))
8 1m1e0 12324 . . . . . 6 (1 − 1) = 0
98oveq2i 7437 . . . . 5 (𝑃↑(1 − 1)) = (𝑃↑0)
105exp0d 14146 . . . . 5 (𝑃 ∈ ℙ → (𝑃↑0) = 1)
119, 10eqtrid 2780 . . . 4 (𝑃 ∈ ℙ → (𝑃↑(1 − 1)) = 1)
1211oveq1d 7441 . . 3 (𝑃 ∈ ℙ → ((𝑃↑(1 − 1)) · (𝑃 − 1)) = (1 · (𝑃 − 1)))
13 ax-1cn 11206 . . . . 5 1 ∈ ℂ
14 subcl 11499 . . . . 5 ((𝑃 ∈ ℂ ∧ 1 ∈ ℂ) → (𝑃 − 1) ∈ ℂ)
155, 13, 14sylancl 584 . . . 4 (𝑃 ∈ ℙ → (𝑃 − 1) ∈ ℂ)
1615mullidd 11272 . . 3 (𝑃 ∈ ℙ → (1 · (𝑃 − 1)) = (𝑃 − 1))
1712, 16eqtrd 2768 . 2 (𝑃 ∈ ℙ → ((𝑃↑(1 − 1)) · (𝑃 − 1)) = (𝑃 − 1))
183, 7, 173eqtr3d 2776 1 (𝑃 ∈ ℙ → (ϕ‘𝑃) = (𝑃 − 1))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1533  wcel 2098  cfv 6553  (class class class)co 7426  cc 11146  0cc0 11148  1c1 11149   · cmul 11153  cmin 11484  cn 12252  cexp 14068  cprime 16651  ϕcphi 16742
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2699  ax-sep 5303  ax-nul 5310  ax-pow 5369  ax-pr 5433  ax-un 7748  ax-cnex 11204  ax-resscn 11205  ax-1cn 11206  ax-icn 11207  ax-addcl 11208  ax-addrcl 11209  ax-mulcl 11210  ax-mulrcl 11211  ax-mulcom 11212  ax-addass 11213  ax-mulass 11214  ax-distr 11215  ax-i2m1 11216  ax-1ne0 11217  ax-1rid 11218  ax-rnegex 11219  ax-rrecex 11220  ax-cnre 11221  ax-pre-lttri 11222  ax-pre-lttrn 11223  ax-pre-ltadd 11224  ax-pre-mulgt0 11225  ax-pre-sup 11226
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2529  df-eu 2558  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3374  df-reu 3375  df-rab 3431  df-v 3475  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4327  df-if 4533  df-pw 4608  df-sn 4633  df-pr 4635  df-op 4639  df-uni 4913  df-int 4954  df-iun 5002  df-br 5153  df-opab 5215  df-mpt 5236  df-tr 5270  df-id 5580  df-eprel 5586  df-po 5594  df-so 5595  df-fr 5637  df-we 5639  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-pred 6310  df-ord 6377  df-on 6378  df-lim 6379  df-suc 6380  df-iota 6505  df-fun 6555  df-fn 6556  df-f 6557  df-f1 6558  df-fo 6559  df-f1o 6560  df-fv 6561  df-riota 7382  df-ov 7429  df-oprab 7430  df-mpo 7431  df-om 7879  df-1st 8001  df-2nd 8002  df-frecs 8295  df-wrecs 8326  df-recs 8400  df-rdg 8439  df-1o 8495  df-2o 8496  df-oadd 8499  df-er 8733  df-en 8973  df-dom 8974  df-sdom 8975  df-fin 8976  df-sup 9475  df-inf 9476  df-dju 9934  df-card 9972  df-pnf 11290  df-mnf 11291  df-xr 11292  df-ltxr 11293  df-le 11294  df-sub 11486  df-neg 11487  df-div 11912  df-nn 12253  df-2 12315  df-3 12316  df-n0 12513  df-z 12599  df-uz 12863  df-rp 13017  df-fz 13527  df-fl 13799  df-mod 13877  df-seq 14009  df-exp 14069  df-hash 14332  df-cj 15088  df-re 15089  df-im 15090  df-sqrt 15224  df-abs 15225  df-dvds 16241  df-gcd 16479  df-prm 16652  df-phi 16744
This theorem is referenced by:  fermltl  16762  prmdiv  16763  vfermltl  16779  pockthlem  16883  lgslem1  27258  lgsqrlem2  27308  fmtnoprmfac1  46952
  Copyright terms: Public domain W3C validator
OSZAR »