![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > eqlkr4 | Structured version Visualization version GIF version |
Description: Two functionals with the same kernel are the same up to a constant. (Contributed by NM, 4-Feb-2015.) |
Ref | Expression |
---|---|
eqlkr4.s | ⊢ 𝑆 = (Scalar‘𝑊) |
eqlkr4.r | ⊢ 𝑅 = (Base‘𝑆) |
eqlkr4.f | ⊢ 𝐹 = (LFnl‘𝑊) |
eqlkr4.k | ⊢ 𝐾 = (LKer‘𝑊) |
eqlkr4.d | ⊢ 𝐷 = (LDual‘𝑊) |
eqlkr4.t | ⊢ · = ( ·𝑠 ‘𝐷) |
eqlkr4.w | ⊢ (𝜑 → 𝑊 ∈ LVec) |
eqlkr4.g | ⊢ (𝜑 → 𝐺 ∈ 𝐹) |
eqlkr4.h | ⊢ (𝜑 → 𝐻 ∈ 𝐹) |
eqlkr4.e | ⊢ (𝜑 → (𝐾‘𝐺) = (𝐾‘𝐻)) |
Ref | Expression |
---|---|
eqlkr4 | ⊢ (𝜑 → ∃𝑟 ∈ 𝑅 𝐻 = (𝑟 · 𝐺)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqlkr4.w | . . 3 ⊢ (𝜑 → 𝑊 ∈ LVec) | |
2 | eqlkr4.g | . . 3 ⊢ (𝜑 → 𝐺 ∈ 𝐹) | |
3 | eqlkr4.h | . . 3 ⊢ (𝜑 → 𝐻 ∈ 𝐹) | |
4 | eqlkr4.e | . . 3 ⊢ (𝜑 → (𝐾‘𝐺) = (𝐾‘𝐻)) | |
5 | eqlkr4.s | . . . 4 ⊢ 𝑆 = (Scalar‘𝑊) | |
6 | eqlkr4.r | . . . 4 ⊢ 𝑅 = (Base‘𝑆) | |
7 | eqid 2728 | . . . 4 ⊢ (.r‘𝑆) = (.r‘𝑆) | |
8 | eqid 2728 | . . . 4 ⊢ (Base‘𝑊) = (Base‘𝑊) | |
9 | eqlkr4.f | . . . 4 ⊢ 𝐹 = (LFnl‘𝑊) | |
10 | eqlkr4.k | . . . 4 ⊢ 𝐾 = (LKer‘𝑊) | |
11 | 5, 6, 7, 8, 9, 10 | eqlkr2 38566 | . . 3 ⊢ ((𝑊 ∈ LVec ∧ (𝐺 ∈ 𝐹 ∧ 𝐻 ∈ 𝐹) ∧ (𝐾‘𝐺) = (𝐾‘𝐻)) → ∃𝑟 ∈ 𝑅 𝐻 = (𝐺 ∘f (.r‘𝑆)((Base‘𝑊) × {𝑟}))) |
12 | 1, 2, 3, 4, 11 | syl121anc 1373 | . 2 ⊢ (𝜑 → ∃𝑟 ∈ 𝑅 𝐻 = (𝐺 ∘f (.r‘𝑆)((Base‘𝑊) × {𝑟}))) |
13 | eqlkr4.d | . . . . 5 ⊢ 𝐷 = (LDual‘𝑊) | |
14 | eqlkr4.t | . . . . 5 ⊢ · = ( ·𝑠 ‘𝐷) | |
15 | 1 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑟 ∈ 𝑅) → 𝑊 ∈ LVec) |
16 | simpr 484 | . . . . 5 ⊢ ((𝜑 ∧ 𝑟 ∈ 𝑅) → 𝑟 ∈ 𝑅) | |
17 | 2 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑟 ∈ 𝑅) → 𝐺 ∈ 𝐹) |
18 | 9, 8, 5, 6, 7, 13, 14, 15, 16, 17 | ldualvs 38603 | . . . 4 ⊢ ((𝜑 ∧ 𝑟 ∈ 𝑅) → (𝑟 · 𝐺) = (𝐺 ∘f (.r‘𝑆)((Base‘𝑊) × {𝑟}))) |
19 | 18 | eqeq2d 2739 | . . 3 ⊢ ((𝜑 ∧ 𝑟 ∈ 𝑅) → (𝐻 = (𝑟 · 𝐺) ↔ 𝐻 = (𝐺 ∘f (.r‘𝑆)((Base‘𝑊) × {𝑟})))) |
20 | 19 | rexbidva 3172 | . 2 ⊢ (𝜑 → (∃𝑟 ∈ 𝑅 𝐻 = (𝑟 · 𝐺) ↔ ∃𝑟 ∈ 𝑅 𝐻 = (𝐺 ∘f (.r‘𝑆)((Base‘𝑊) × {𝑟})))) |
21 | 12, 20 | mpbird 257 | 1 ⊢ (𝜑 → ∃𝑟 ∈ 𝑅 𝐻 = (𝑟 · 𝐺)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1534 ∈ wcel 2099 ∃wrex 3066 {csn 4624 × cxp 5670 ‘cfv 6542 (class class class)co 7414 ∘f cof 7677 Basecbs 17173 .rcmulr 17227 Scalarcsca 17229 ·𝑠 cvsca 17230 LVecclvec 20980 LFnlclfn 38523 LKerclk 38551 LDualcld 38589 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-rep 5279 ax-sep 5293 ax-nul 5300 ax-pow 5359 ax-pr 5423 ax-un 7734 ax-cnex 11188 ax-resscn 11189 ax-1cn 11190 ax-icn 11191 ax-addcl 11192 ax-addrcl 11193 ax-mulcl 11194 ax-mulrcl 11195 ax-mulcom 11196 ax-addass 11197 ax-mulass 11198 ax-distr 11199 ax-i2m1 11200 ax-1ne0 11201 ax-1rid 11202 ax-rnegex 11203 ax-rrecex 11204 ax-cnre 11205 ax-pre-lttri 11206 ax-pre-lttrn 11207 ax-pre-ltadd 11208 ax-pre-mulgt0 11209 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2937 df-nel 3043 df-ral 3058 df-rex 3067 df-rmo 3372 df-reu 3373 df-rab 3429 df-v 3472 df-sbc 3776 df-csb 3891 df-dif 3948 df-un 3950 df-in 3952 df-ss 3962 df-pss 3964 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-tp 4629 df-op 4631 df-uni 4904 df-iun 4993 df-br 5143 df-opab 5205 df-mpt 5226 df-tr 5260 df-id 5570 df-eprel 5576 df-po 5584 df-so 5585 df-fr 5627 df-we 5629 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-pred 6299 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-riota 7370 df-ov 7417 df-oprab 7418 df-mpo 7419 df-of 7679 df-om 7865 df-1st 7987 df-2nd 7988 df-tpos 8225 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-1o 8480 df-er 8718 df-map 8840 df-en 8958 df-dom 8959 df-sdom 8960 df-fin 8961 df-pnf 11274 df-mnf 11275 df-xr 11276 df-ltxr 11277 df-le 11278 df-sub 11470 df-neg 11471 df-nn 12237 df-2 12299 df-3 12300 df-4 12301 df-5 12302 df-6 12303 df-n0 12497 df-z 12583 df-uz 12847 df-fz 13511 df-struct 17109 df-sets 17126 df-slot 17144 df-ndx 17156 df-base 17174 df-ress 17203 df-plusg 17239 df-mulr 17240 df-sca 17242 df-vsca 17243 df-0g 17416 df-mgm 18593 df-sgrp 18672 df-mnd 18688 df-grp 18886 df-minusg 18887 df-sbg 18888 df-cmn 19730 df-abl 19731 df-mgp 20068 df-rng 20086 df-ur 20115 df-ring 20168 df-oppr 20266 df-dvdsr 20289 df-unit 20290 df-invr 20320 df-drng 20619 df-lmod 20738 df-lvec 20981 df-lfl 38524 df-lkr 38552 df-ldual 38590 |
This theorem is referenced by: lkrss2N 38635 lcfrlem16 41025 mapdrvallem2 41112 |
Copyright terms: Public domain | W3C validator |