![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > eqord1 | Structured version Visualization version GIF version |
Description: A strictly increasing real function on a subset of ℝ is one-to-one. (Contributed by Mario Carneiro, 14-Jun-2014.) |
Ref | Expression |
---|---|
ltord.1 | ⊢ (𝑥 = 𝑦 → 𝐴 = 𝐵) |
ltord.2 | ⊢ (𝑥 = 𝐶 → 𝐴 = 𝑀) |
ltord.3 | ⊢ (𝑥 = 𝐷 → 𝐴 = 𝑁) |
ltord.4 | ⊢ 𝑆 ⊆ ℝ |
ltord.5 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → 𝐴 ∈ ℝ) |
ltord.6 | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 < 𝑦 → 𝐴 < 𝐵)) |
Ref | Expression |
---|---|
eqord1 | ⊢ ((𝜑 ∧ (𝐶 ∈ 𝑆 ∧ 𝐷 ∈ 𝑆)) → (𝐶 = 𝐷 ↔ 𝑀 = 𝑁)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ltord.1 | . . . 4 ⊢ (𝑥 = 𝑦 → 𝐴 = 𝐵) | |
2 | ltord.2 | . . . 4 ⊢ (𝑥 = 𝐶 → 𝐴 = 𝑀) | |
3 | ltord.3 | . . . 4 ⊢ (𝑥 = 𝐷 → 𝐴 = 𝑁) | |
4 | ltord.4 | . . . 4 ⊢ 𝑆 ⊆ ℝ | |
5 | ltord.5 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → 𝐴 ∈ ℝ) | |
6 | ltord.6 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 < 𝑦 → 𝐴 < 𝐵)) | |
7 | 1, 2, 3, 4, 5, 6 | leord1 11771 | . . 3 ⊢ ((𝜑 ∧ (𝐶 ∈ 𝑆 ∧ 𝐷 ∈ 𝑆)) → (𝐶 ≤ 𝐷 ↔ 𝑀 ≤ 𝑁)) |
8 | 1, 3, 2, 4, 5, 6 | leord1 11771 | . . . 4 ⊢ ((𝜑 ∧ (𝐷 ∈ 𝑆 ∧ 𝐶 ∈ 𝑆)) → (𝐷 ≤ 𝐶 ↔ 𝑁 ≤ 𝑀)) |
9 | 8 | ancom2s 649 | . . 3 ⊢ ((𝜑 ∧ (𝐶 ∈ 𝑆 ∧ 𝐷 ∈ 𝑆)) → (𝐷 ≤ 𝐶 ↔ 𝑁 ≤ 𝑀)) |
10 | 7, 9 | anbi12d 631 | . 2 ⊢ ((𝜑 ∧ (𝐶 ∈ 𝑆 ∧ 𝐷 ∈ 𝑆)) → ((𝐶 ≤ 𝐷 ∧ 𝐷 ≤ 𝐶) ↔ (𝑀 ≤ 𝑁 ∧ 𝑁 ≤ 𝑀))) |
11 | 4 | sseli 3976 | . . . 4 ⊢ (𝐶 ∈ 𝑆 → 𝐶 ∈ ℝ) |
12 | 4 | sseli 3976 | . . . 4 ⊢ (𝐷 ∈ 𝑆 → 𝐷 ∈ ℝ) |
13 | letri3 11329 | . . . 4 ⊢ ((𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ) → (𝐶 = 𝐷 ↔ (𝐶 ≤ 𝐷 ∧ 𝐷 ≤ 𝐶))) | |
14 | 11, 12, 13 | syl2an 595 | . . 3 ⊢ ((𝐶 ∈ 𝑆 ∧ 𝐷 ∈ 𝑆) → (𝐶 = 𝐷 ↔ (𝐶 ≤ 𝐷 ∧ 𝐷 ≤ 𝐶))) |
15 | 14 | adantl 481 | . 2 ⊢ ((𝜑 ∧ (𝐶 ∈ 𝑆 ∧ 𝐷 ∈ 𝑆)) → (𝐶 = 𝐷 ↔ (𝐶 ≤ 𝐷 ∧ 𝐷 ≤ 𝐶))) |
16 | 5 | ralrimiva 3143 | . . . . 5 ⊢ (𝜑 → ∀𝑥 ∈ 𝑆 𝐴 ∈ ℝ) |
17 | 2 | eleq1d 2814 | . . . . . 6 ⊢ (𝑥 = 𝐶 → (𝐴 ∈ ℝ ↔ 𝑀 ∈ ℝ)) |
18 | 17 | rspccva 3608 | . . . . 5 ⊢ ((∀𝑥 ∈ 𝑆 𝐴 ∈ ℝ ∧ 𝐶 ∈ 𝑆) → 𝑀 ∈ ℝ) |
19 | 16, 18 | sylan 579 | . . . 4 ⊢ ((𝜑 ∧ 𝐶 ∈ 𝑆) → 𝑀 ∈ ℝ) |
20 | 19 | adantrr 716 | . . 3 ⊢ ((𝜑 ∧ (𝐶 ∈ 𝑆 ∧ 𝐷 ∈ 𝑆)) → 𝑀 ∈ ℝ) |
21 | 3 | eleq1d 2814 | . . . . . 6 ⊢ (𝑥 = 𝐷 → (𝐴 ∈ ℝ ↔ 𝑁 ∈ ℝ)) |
22 | 21 | rspccva 3608 | . . . . 5 ⊢ ((∀𝑥 ∈ 𝑆 𝐴 ∈ ℝ ∧ 𝐷 ∈ 𝑆) → 𝑁 ∈ ℝ) |
23 | 16, 22 | sylan 579 | . . . 4 ⊢ ((𝜑 ∧ 𝐷 ∈ 𝑆) → 𝑁 ∈ ℝ) |
24 | 23 | adantrl 715 | . . 3 ⊢ ((𝜑 ∧ (𝐶 ∈ 𝑆 ∧ 𝐷 ∈ 𝑆)) → 𝑁 ∈ ℝ) |
25 | 20, 24 | letri3d 11386 | . 2 ⊢ ((𝜑 ∧ (𝐶 ∈ 𝑆 ∧ 𝐷 ∈ 𝑆)) → (𝑀 = 𝑁 ↔ (𝑀 ≤ 𝑁 ∧ 𝑁 ≤ 𝑀))) |
26 | 10, 15, 25 | 3bitr4d 311 | 1 ⊢ ((𝜑 ∧ (𝐶 ∈ 𝑆 ∧ 𝐷 ∈ 𝑆)) → (𝐶 = 𝐷 ↔ 𝑀 = 𝑁)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1534 ∈ wcel 2099 ∀wral 3058 ⊆ wss 3947 class class class wbr 5148 ℝcr 11137 < clt 11278 ≤ cle 11279 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-sep 5299 ax-nul 5306 ax-pow 5365 ax-pr 5429 ax-un 7740 ax-resscn 11195 ax-pre-lttri 11212 ax-pre-lttrn 11213 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-rab 3430 df-v 3473 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4909 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5576 df-po 5590 df-so 5591 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-iota 6500 df-fun 6550 df-fn 6551 df-f 6552 df-f1 6553 df-fo 6554 df-f1o 6555 df-fv 6556 df-er 8724 df-en 8964 df-dom 8965 df-sdom 8966 df-pnf 11280 df-mnf 11281 df-xr 11282 df-ltxr 11283 df-le 11284 |
This theorem is referenced by: eqord2 11775 expcan 14165 ovolicc2lem3 25447 rmyeq0 42374 rmyeq 42375 |
Copyright terms: Public domain | W3C validator |