MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ltord2 Structured version   Visualization version   GIF version

Theorem ltord2 11779
Description: Infer an ordering relation from a proof in only one direction. (Contributed by Mario Carneiro, 14-Jun-2014.)
Hypotheses
Ref Expression
ltord.1 (𝑥 = 𝑦𝐴 = 𝐵)
ltord.2 (𝑥 = 𝐶𝐴 = 𝑀)
ltord.3 (𝑥 = 𝐷𝐴 = 𝑁)
ltord.4 𝑆 ⊆ ℝ
ltord.5 ((𝜑𝑥𝑆) → 𝐴 ∈ ℝ)
ltord2.6 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 < 𝑦𝐵 < 𝐴))
Assertion
Ref Expression
ltord2 ((𝜑 ∧ (𝐶𝑆𝐷𝑆)) → (𝐶 < 𝐷𝑁 < 𝑀))
Distinct variable groups:   𝑥,𝐵   𝑥,𝑦,𝐶   𝑥,𝐷,𝑦   𝑥,𝑀,𝑦   𝑥,𝑁,𝑦   𝜑,𝑥,𝑦   𝑥,𝑆,𝑦
Allowed substitution hints:   𝐴(𝑥,𝑦)   𝐵(𝑦)

Proof of Theorem ltord2
StepHypRef Expression
1 ltord.1 . . . 4 (𝑥 = 𝑦𝐴 = 𝐵)
21negeqd 11490 . . 3 (𝑥 = 𝑦 → -𝐴 = -𝐵)
3 ltord.2 . . . 4 (𝑥 = 𝐶𝐴 = 𝑀)
43negeqd 11490 . . 3 (𝑥 = 𝐶 → -𝐴 = -𝑀)
5 ltord.3 . . . 4 (𝑥 = 𝐷𝐴 = 𝑁)
65negeqd 11490 . . 3 (𝑥 = 𝐷 → -𝐴 = -𝑁)
7 ltord.4 . . 3 𝑆 ⊆ ℝ
8 ltord.5 . . . 4 ((𝜑𝑥𝑆) → 𝐴 ∈ ℝ)
98renegcld 11677 . . 3 ((𝜑𝑥𝑆) → -𝐴 ∈ ℝ)
10 ltord2.6 . . . 4 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 < 𝑦𝐵 < 𝐴))
118ralrimiva 3142 . . . . . . 7 (𝜑 → ∀𝑥𝑆 𝐴 ∈ ℝ)
121eleq1d 2813 . . . . . . . 8 (𝑥 = 𝑦 → (𝐴 ∈ ℝ ↔ 𝐵 ∈ ℝ))
1312rspccva 3608 . . . . . . 7 ((∀𝑥𝑆 𝐴 ∈ ℝ ∧ 𝑦𝑆) → 𝐵 ∈ ℝ)
1411, 13sylan 578 . . . . . 6 ((𝜑𝑦𝑆) → 𝐵 ∈ ℝ)
1514adantrl 714 . . . . 5 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → 𝐵 ∈ ℝ)
168adantrr 715 . . . . 5 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → 𝐴 ∈ ℝ)
17 ltneg 11750 . . . . 5 ((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (𝐵 < 𝐴 ↔ -𝐴 < -𝐵))
1815, 16, 17syl2anc 582 . . . 4 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝐵 < 𝐴 ↔ -𝐴 < -𝐵))
1910, 18sylibd 238 . . 3 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 < 𝑦 → -𝐴 < -𝐵))
202, 4, 6, 7, 9, 19ltord1 11776 . 2 ((𝜑 ∧ (𝐶𝑆𝐷𝑆)) → (𝐶 < 𝐷 ↔ -𝑀 < -𝑁))
215eleq1d 2813 . . . . . 6 (𝑥 = 𝐷 → (𝐴 ∈ ℝ ↔ 𝑁 ∈ ℝ))
2221rspccva 3608 . . . . 5 ((∀𝑥𝑆 𝐴 ∈ ℝ ∧ 𝐷𝑆) → 𝑁 ∈ ℝ)
2311, 22sylan 578 . . . 4 ((𝜑𝐷𝑆) → 𝑁 ∈ ℝ)
2423adantrl 714 . . 3 ((𝜑 ∧ (𝐶𝑆𝐷𝑆)) → 𝑁 ∈ ℝ)
253eleq1d 2813 . . . . . 6 (𝑥 = 𝐶 → (𝐴 ∈ ℝ ↔ 𝑀 ∈ ℝ))
2625rspccva 3608 . . . . 5 ((∀𝑥𝑆 𝐴 ∈ ℝ ∧ 𝐶𝑆) → 𝑀 ∈ ℝ)
2711, 26sylan 578 . . . 4 ((𝜑𝐶𝑆) → 𝑀 ∈ ℝ)
2827adantrr 715 . . 3 ((𝜑 ∧ (𝐶𝑆𝐷𝑆)) → 𝑀 ∈ ℝ)
29 ltneg 11750 . . 3 ((𝑁 ∈ ℝ ∧ 𝑀 ∈ ℝ) → (𝑁 < 𝑀 ↔ -𝑀 < -𝑁))
3024, 28, 29syl2anc 582 . 2 ((𝜑 ∧ (𝐶𝑆𝐷𝑆)) → (𝑁 < 𝑀 ↔ -𝑀 < -𝑁))
3120, 30bitr4d 281 1 ((𝜑 ∧ (𝐶𝑆𝐷𝑆)) → (𝐶 < 𝐷𝑁 < 𝑀))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394   = wceq 1533  wcel 2098  wral 3057  wss 3947   class class class wbr 5150  cr 11143   < clt 11284  -cneg 11481
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2698  ax-sep 5301  ax-nul 5308  ax-pow 5367  ax-pr 5431  ax-un 7744  ax-resscn 11201  ax-1cn 11202  ax-icn 11203  ax-addcl 11204  ax-addrcl 11205  ax-mulcl 11206  ax-mulrcl 11207  ax-mulcom 11208  ax-addass 11209  ax-mulass 11210  ax-distr 11211  ax-i2m1 11212  ax-1ne0 11213  ax-1rid 11214  ax-rnegex 11215  ax-rrecex 11216  ax-cnre 11217  ax-pre-lttri 11218  ax-pre-lttrn 11219  ax-pre-ltadd 11220
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2529  df-eu 2558  df-clab 2705  df-cleq 2719  df-clel 2805  df-nfc 2880  df-ne 2937  df-nel 3043  df-ral 3058  df-rex 3067  df-reu 3373  df-rab 3429  df-v 3473  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4325  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4911  df-br 5151  df-opab 5213  df-mpt 5234  df-id 5578  df-po 5592  df-so 5593  df-xp 5686  df-rel 5687  df-cnv 5688  df-co 5689  df-dm 5690  df-rn 5691  df-res 5692  df-ima 5693  df-iota 6503  df-fun 6553  df-fn 6554  df-f 6555  df-f1 6556  df-fo 6557  df-f1o 6558  df-fv 6559  df-riota 7380  df-ov 7427  df-oprab 7428  df-mpo 7429  df-er 8729  df-en 8969  df-dom 8970  df-sdom 8971  df-pnf 11286  df-mnf 11287  df-xr 11288  df-ltxr 11289  df-le 11290  df-sub 11482  df-neg 11483
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator
OSZAR »