![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > erlbr2d | Structured version Visualization version GIF version |
Description: Deduce the ring localization equivalence relation. Pairs 〈𝐸, 𝐺〉 and 〈𝑇 · 𝐸, 𝑇 · 𝐺〉 for 𝑇 ∈ 𝑆 are equivalent under the localization relation. (Contributed by Thierry Arnoux, 4-May-2025.) |
Ref | Expression |
---|---|
erlbr2d.b | ⊢ 𝐵 = (Base‘𝑅) |
erlbr2d.q | ⊢ ∼ = (𝑅 ~RL 𝑆) |
erlbr2d.r | ⊢ (𝜑 → 𝑅 ∈ CRing) |
erlbr2d.s | ⊢ (𝜑 → 𝑆 ∈ (SubMnd‘(mulGrp‘𝑅))) |
erlbr2d.m | ⊢ · = (.r‘𝑅) |
erlbr2d.u | ⊢ (𝜑 → 𝑈 = 〈𝐸, 𝐺〉) |
erlbr2d.v | ⊢ (𝜑 → 𝑉 = 〈𝐹, 𝐻〉) |
erlbr2d.e | ⊢ (𝜑 → 𝐸 ∈ 𝐵) |
erlbr2d.f | ⊢ (𝜑 → 𝐹 ∈ 𝐵) |
erlbr2d.g | ⊢ (𝜑 → 𝐺 ∈ 𝑆) |
erlbr2d.h | ⊢ (𝜑 → 𝐻 ∈ 𝑆) |
erlbr2d.1 | ⊢ (𝜑 → 𝑇 ∈ 𝑆) |
erlbr2d.2 | ⊢ (𝜑 → 𝐹 = (𝑇 · 𝐸)) |
erlbr2d.3 | ⊢ (𝜑 → 𝐻 = (𝑇 · 𝐺)) |
Ref | Expression |
---|---|
erlbr2d | ⊢ (𝜑 → 𝑈 ∼ 𝑉) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | erlbr2d.b | . 2 ⊢ 𝐵 = (Base‘𝑅) | |
2 | erlbr2d.q | . 2 ⊢ ∼ = (𝑅 ~RL 𝑆) | |
3 | erlbr2d.s | . . 3 ⊢ (𝜑 → 𝑆 ∈ (SubMnd‘(mulGrp‘𝑅))) | |
4 | eqid 2728 | . . . . 5 ⊢ (mulGrp‘𝑅) = (mulGrp‘𝑅) | |
5 | 4, 1 | mgpbas 20080 | . . . 4 ⊢ 𝐵 = (Base‘(mulGrp‘𝑅)) |
6 | 5 | submss 18761 | . . 3 ⊢ (𝑆 ∈ (SubMnd‘(mulGrp‘𝑅)) → 𝑆 ⊆ 𝐵) |
7 | 3, 6 | syl 17 | . 2 ⊢ (𝜑 → 𝑆 ⊆ 𝐵) |
8 | eqid 2728 | . 2 ⊢ (0g‘𝑅) = (0g‘𝑅) | |
9 | erlbr2d.m | . 2 ⊢ · = (.r‘𝑅) | |
10 | eqid 2728 | . 2 ⊢ (-g‘𝑅) = (-g‘𝑅) | |
11 | erlbr2d.u | . 2 ⊢ (𝜑 → 𝑈 = 〈𝐸, 𝐺〉) | |
12 | erlbr2d.v | . 2 ⊢ (𝜑 → 𝑉 = 〈𝐹, 𝐻〉) | |
13 | erlbr2d.e | . 2 ⊢ (𝜑 → 𝐸 ∈ 𝐵) | |
14 | erlbr2d.f | . 2 ⊢ (𝜑 → 𝐹 ∈ 𝐵) | |
15 | erlbr2d.g | . 2 ⊢ (𝜑 → 𝐺 ∈ 𝑆) | |
16 | erlbr2d.h | . 2 ⊢ (𝜑 → 𝐻 ∈ 𝑆) | |
17 | eqid 2728 | . . . . 5 ⊢ (1r‘𝑅) = (1r‘𝑅) | |
18 | 4, 17 | ringidval 20123 | . . . 4 ⊢ (1r‘𝑅) = (0g‘(mulGrp‘𝑅)) |
19 | 18 | subm0cl 18763 | . . 3 ⊢ (𝑆 ∈ (SubMnd‘(mulGrp‘𝑅)) → (1r‘𝑅) ∈ 𝑆) |
20 | 3, 19 | syl 17 | . 2 ⊢ (𝜑 → (1r‘𝑅) ∈ 𝑆) |
21 | erlbr2d.3 | . . . . . . 7 ⊢ (𝜑 → 𝐻 = (𝑇 · 𝐺)) | |
22 | 21 | oveq2d 7436 | . . . . . 6 ⊢ (𝜑 → (𝐸 · 𝐻) = (𝐸 · (𝑇 · 𝐺))) |
23 | erlbr2d.2 | . . . . . . 7 ⊢ (𝜑 → 𝐹 = (𝑇 · 𝐸)) | |
24 | 23 | oveq1d 7435 | . . . . . 6 ⊢ (𝜑 → (𝐹 · 𝐺) = ((𝑇 · 𝐸) · 𝐺)) |
25 | 22, 24 | oveq12d 7438 | . . . . 5 ⊢ (𝜑 → ((𝐸 · 𝐻)(-g‘𝑅)(𝐹 · 𝐺)) = ((𝐸 · (𝑇 · 𝐺))(-g‘𝑅)((𝑇 · 𝐸) · 𝐺))) |
26 | erlbr2d.r | . . . . . . . 8 ⊢ (𝜑 → 𝑅 ∈ CRing) | |
27 | erlbr2d.1 | . . . . . . . . 9 ⊢ (𝜑 → 𝑇 ∈ 𝑆) | |
28 | 7, 27 | sseldd 3981 | . . . . . . . 8 ⊢ (𝜑 → 𝑇 ∈ 𝐵) |
29 | 7, 15 | sseldd 3981 | . . . . . . . 8 ⊢ (𝜑 → 𝐺 ∈ 𝐵) |
30 | 1, 9, 26, 28, 13, 29 | cringmul32d 32949 | . . . . . . 7 ⊢ (𝜑 → ((𝑇 · 𝐸) · 𝐺) = ((𝑇 · 𝐺) · 𝐸)) |
31 | 26 | crngringd 20186 | . . . . . . . . 9 ⊢ (𝜑 → 𝑅 ∈ Ring) |
32 | 1, 9, 31, 28, 29 | ringcld 20199 | . . . . . . . 8 ⊢ (𝜑 → (𝑇 · 𝐺) ∈ 𝐵) |
33 | 1, 9, 26, 32, 13 | crngcomd 20195 | . . . . . . 7 ⊢ (𝜑 → ((𝑇 · 𝐺) · 𝐸) = (𝐸 · (𝑇 · 𝐺))) |
34 | 30, 33 | eqtrd 2768 | . . . . . 6 ⊢ (𝜑 → ((𝑇 · 𝐸) · 𝐺) = (𝐸 · (𝑇 · 𝐺))) |
35 | 34 | oveq2d 7436 | . . . . 5 ⊢ (𝜑 → ((𝐸 · (𝑇 · 𝐺))(-g‘𝑅)((𝑇 · 𝐸) · 𝐺)) = ((𝐸 · (𝑇 · 𝐺))(-g‘𝑅)(𝐸 · (𝑇 · 𝐺)))) |
36 | 26 | crnggrpd 20187 | . . . . . 6 ⊢ (𝜑 → 𝑅 ∈ Grp) |
37 | 1, 9, 31, 13, 32 | ringcld 20199 | . . . . . 6 ⊢ (𝜑 → (𝐸 · (𝑇 · 𝐺)) ∈ 𝐵) |
38 | 1, 8, 10 | grpsubid 18980 | . . . . . 6 ⊢ ((𝑅 ∈ Grp ∧ (𝐸 · (𝑇 · 𝐺)) ∈ 𝐵) → ((𝐸 · (𝑇 · 𝐺))(-g‘𝑅)(𝐸 · (𝑇 · 𝐺))) = (0g‘𝑅)) |
39 | 36, 37, 38 | syl2anc 583 | . . . . 5 ⊢ (𝜑 → ((𝐸 · (𝑇 · 𝐺))(-g‘𝑅)(𝐸 · (𝑇 · 𝐺))) = (0g‘𝑅)) |
40 | 25, 35, 39 | 3eqtrd 2772 | . . . 4 ⊢ (𝜑 → ((𝐸 · 𝐻)(-g‘𝑅)(𝐹 · 𝐺)) = (0g‘𝑅)) |
41 | 40 | oveq2d 7436 | . . 3 ⊢ (𝜑 → ((1r‘𝑅) · ((𝐸 · 𝐻)(-g‘𝑅)(𝐹 · 𝐺))) = ((1r‘𝑅) · (0g‘𝑅))) |
42 | 7, 20 | sseldd 3981 | . . . 4 ⊢ (𝜑 → (1r‘𝑅) ∈ 𝐵) |
43 | 1, 9, 8, 31, 42 | ringrzd 20232 | . . 3 ⊢ (𝜑 → ((1r‘𝑅) · (0g‘𝑅)) = (0g‘𝑅)) |
44 | 41, 43 | eqtrd 2768 | . 2 ⊢ (𝜑 → ((1r‘𝑅) · ((𝐸 · 𝐻)(-g‘𝑅)(𝐹 · 𝐺))) = (0g‘𝑅)) |
45 | 1, 2, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 20, 44 | erlbrd 32990 | 1 ⊢ (𝜑 → 𝑈 ∼ 𝑉) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1534 ∈ wcel 2099 ⊆ wss 3947 〈cop 4635 class class class wbr 5148 ‘cfv 6548 (class class class)co 7420 Basecbs 17180 .rcmulr 17234 0gc0g 17421 SubMndcsubmnd 18739 Grpcgrp 18890 -gcsg 18892 mulGrpcmgp 20074 1rcur 20121 CRingccrg 20174 ~RL cerl 32980 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-sep 5299 ax-nul 5306 ax-pow 5365 ax-pr 5429 ax-un 7740 ax-cnex 11195 ax-resscn 11196 ax-1cn 11197 ax-icn 11198 ax-addcl 11199 ax-addrcl 11200 ax-mulcl 11201 ax-mulrcl 11202 ax-mulcom 11203 ax-addass 11204 ax-mulass 11205 ax-distr 11206 ax-i2m1 11207 ax-1ne0 11208 ax-1rid 11209 ax-rnegex 11210 ax-rrecex 11211 ax-cnre 11212 ax-pre-lttri 11213 ax-pre-lttrn 11214 ax-pre-ltadd 11215 ax-pre-mulgt0 11216 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-rmo 3373 df-reu 3374 df-rab 3430 df-v 3473 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4909 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5576 df-eprel 5582 df-po 5590 df-so 5591 df-fr 5633 df-we 5635 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-pred 6305 df-ord 6372 df-on 6373 df-lim 6374 df-suc 6375 df-iota 6500 df-fun 6550 df-fn 6551 df-f 6552 df-f1 6553 df-fo 6554 df-f1o 6555 df-fv 6556 df-riota 7376 df-ov 7423 df-oprab 7424 df-mpo 7425 df-om 7871 df-1st 7993 df-2nd 7994 df-frecs 8287 df-wrecs 8318 df-recs 8392 df-rdg 8431 df-er 8725 df-en 8965 df-dom 8966 df-sdom 8967 df-pnf 11281 df-mnf 11282 df-xr 11283 df-ltxr 11284 df-le 11285 df-sub 11477 df-neg 11478 df-nn 12244 df-2 12306 df-sets 17133 df-slot 17151 df-ndx 17163 df-base 17181 df-ress 17210 df-plusg 17246 df-0g 17423 df-mgm 18600 df-sgrp 18679 df-mnd 18695 df-submnd 18741 df-grp 18893 df-minusg 18894 df-sbg 18895 df-cmn 19737 df-abl 19738 df-mgp 20075 df-rng 20093 df-ur 20122 df-ring 20175 df-cring 20176 df-erl 32982 |
This theorem is referenced by: rloccring 32997 |
Copyright terms: Public domain | W3C validator |