Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  erlbr2d Structured version   Visualization version   GIF version

Theorem erlbr2d 32991
Description: Deduce the ring localization equivalence relation. Pairs 𝐸, 𝐺 and 𝑇 · 𝐸, 𝑇 · 𝐺 for 𝑇𝑆 are equivalent under the localization relation. (Contributed by Thierry Arnoux, 4-May-2025.)
Hypotheses
Ref Expression
erlbr2d.b 𝐵 = (Base‘𝑅)
erlbr2d.q = (𝑅 ~RL 𝑆)
erlbr2d.r (𝜑𝑅 ∈ CRing)
erlbr2d.s (𝜑𝑆 ∈ (SubMnd‘(mulGrp‘𝑅)))
erlbr2d.m · = (.r𝑅)
erlbr2d.u (𝜑𝑈 = ⟨𝐸, 𝐺⟩)
erlbr2d.v (𝜑𝑉 = ⟨𝐹, 𝐻⟩)
erlbr2d.e (𝜑𝐸𝐵)
erlbr2d.f (𝜑𝐹𝐵)
erlbr2d.g (𝜑𝐺𝑆)
erlbr2d.h (𝜑𝐻𝑆)
erlbr2d.1 (𝜑𝑇𝑆)
erlbr2d.2 (𝜑𝐹 = (𝑇 · 𝐸))
erlbr2d.3 (𝜑𝐻 = (𝑇 · 𝐺))
Assertion
Ref Expression
erlbr2d (𝜑𝑈 𝑉)

Proof of Theorem erlbr2d
StepHypRef Expression
1 erlbr2d.b . 2 𝐵 = (Base‘𝑅)
2 erlbr2d.q . 2 = (𝑅 ~RL 𝑆)
3 erlbr2d.s . . 3 (𝜑𝑆 ∈ (SubMnd‘(mulGrp‘𝑅)))
4 eqid 2728 . . . . 5 (mulGrp‘𝑅) = (mulGrp‘𝑅)
54, 1mgpbas 20080 . . . 4 𝐵 = (Base‘(mulGrp‘𝑅))
65submss 18761 . . 3 (𝑆 ∈ (SubMnd‘(mulGrp‘𝑅)) → 𝑆𝐵)
73, 6syl 17 . 2 (𝜑𝑆𝐵)
8 eqid 2728 . 2 (0g𝑅) = (0g𝑅)
9 erlbr2d.m . 2 · = (.r𝑅)
10 eqid 2728 . 2 (-g𝑅) = (-g𝑅)
11 erlbr2d.u . 2 (𝜑𝑈 = ⟨𝐸, 𝐺⟩)
12 erlbr2d.v . 2 (𝜑𝑉 = ⟨𝐹, 𝐻⟩)
13 erlbr2d.e . 2 (𝜑𝐸𝐵)
14 erlbr2d.f . 2 (𝜑𝐹𝐵)
15 erlbr2d.g . 2 (𝜑𝐺𝑆)
16 erlbr2d.h . 2 (𝜑𝐻𝑆)
17 eqid 2728 . . . . 5 (1r𝑅) = (1r𝑅)
184, 17ringidval 20123 . . . 4 (1r𝑅) = (0g‘(mulGrp‘𝑅))
1918subm0cl 18763 . . 3 (𝑆 ∈ (SubMnd‘(mulGrp‘𝑅)) → (1r𝑅) ∈ 𝑆)
203, 19syl 17 . 2 (𝜑 → (1r𝑅) ∈ 𝑆)
21 erlbr2d.3 . . . . . . 7 (𝜑𝐻 = (𝑇 · 𝐺))
2221oveq2d 7436 . . . . . 6 (𝜑 → (𝐸 · 𝐻) = (𝐸 · (𝑇 · 𝐺)))
23 erlbr2d.2 . . . . . . 7 (𝜑𝐹 = (𝑇 · 𝐸))
2423oveq1d 7435 . . . . . 6 (𝜑 → (𝐹 · 𝐺) = ((𝑇 · 𝐸) · 𝐺))
2522, 24oveq12d 7438 . . . . 5 (𝜑 → ((𝐸 · 𝐻)(-g𝑅)(𝐹 · 𝐺)) = ((𝐸 · (𝑇 · 𝐺))(-g𝑅)((𝑇 · 𝐸) · 𝐺)))
26 erlbr2d.r . . . . . . . 8 (𝜑𝑅 ∈ CRing)
27 erlbr2d.1 . . . . . . . . 9 (𝜑𝑇𝑆)
287, 27sseldd 3981 . . . . . . . 8 (𝜑𝑇𝐵)
297, 15sseldd 3981 . . . . . . . 8 (𝜑𝐺𝐵)
301, 9, 26, 28, 13, 29cringmul32d 32949 . . . . . . 7 (𝜑 → ((𝑇 · 𝐸) · 𝐺) = ((𝑇 · 𝐺) · 𝐸))
3126crngringd 20186 . . . . . . . . 9 (𝜑𝑅 ∈ Ring)
321, 9, 31, 28, 29ringcld 20199 . . . . . . . 8 (𝜑 → (𝑇 · 𝐺) ∈ 𝐵)
331, 9, 26, 32, 13crngcomd 20195 . . . . . . 7 (𝜑 → ((𝑇 · 𝐺) · 𝐸) = (𝐸 · (𝑇 · 𝐺)))
3430, 33eqtrd 2768 . . . . . 6 (𝜑 → ((𝑇 · 𝐸) · 𝐺) = (𝐸 · (𝑇 · 𝐺)))
3534oveq2d 7436 . . . . 5 (𝜑 → ((𝐸 · (𝑇 · 𝐺))(-g𝑅)((𝑇 · 𝐸) · 𝐺)) = ((𝐸 · (𝑇 · 𝐺))(-g𝑅)(𝐸 · (𝑇 · 𝐺))))
3626crnggrpd 20187 . . . . . 6 (𝜑𝑅 ∈ Grp)
371, 9, 31, 13, 32ringcld 20199 . . . . . 6 (𝜑 → (𝐸 · (𝑇 · 𝐺)) ∈ 𝐵)
381, 8, 10grpsubid 18980 . . . . . 6 ((𝑅 ∈ Grp ∧ (𝐸 · (𝑇 · 𝐺)) ∈ 𝐵) → ((𝐸 · (𝑇 · 𝐺))(-g𝑅)(𝐸 · (𝑇 · 𝐺))) = (0g𝑅))
3936, 37, 38syl2anc 583 . . . . 5 (𝜑 → ((𝐸 · (𝑇 · 𝐺))(-g𝑅)(𝐸 · (𝑇 · 𝐺))) = (0g𝑅))
4025, 35, 393eqtrd 2772 . . . 4 (𝜑 → ((𝐸 · 𝐻)(-g𝑅)(𝐹 · 𝐺)) = (0g𝑅))
4140oveq2d 7436 . . 3 (𝜑 → ((1r𝑅) · ((𝐸 · 𝐻)(-g𝑅)(𝐹 · 𝐺))) = ((1r𝑅) · (0g𝑅)))
427, 20sseldd 3981 . . . 4 (𝜑 → (1r𝑅) ∈ 𝐵)
431, 9, 8, 31, 42ringrzd 20232 . . 3 (𝜑 → ((1r𝑅) · (0g𝑅)) = (0g𝑅))
4441, 43eqtrd 2768 . 2 (𝜑 → ((1r𝑅) · ((𝐸 · 𝐻)(-g𝑅)(𝐹 · 𝐺))) = (0g𝑅))
451, 2, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 20, 44erlbrd 32990 1 (𝜑𝑈 𝑉)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1534  wcel 2099  wss 3947  cop 4635   class class class wbr 5148  cfv 6548  (class class class)co 7420  Basecbs 17180  .rcmulr 17234  0gc0g 17421  SubMndcsubmnd 18739  Grpcgrp 18890  -gcsg 18892  mulGrpcmgp 20074  1rcur 20121  CRingccrg 20174   ~RL cerl 32980
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-sep 5299  ax-nul 5306  ax-pow 5365  ax-pr 5429  ax-un 7740  ax-cnex 11195  ax-resscn 11196  ax-1cn 11197  ax-icn 11198  ax-addcl 11199  ax-addrcl 11200  ax-mulcl 11201  ax-mulrcl 11202  ax-mulcom 11203  ax-addass 11204  ax-mulass 11205  ax-distr 11206  ax-i2m1 11207  ax-1ne0 11208  ax-1rid 11209  ax-rnegex 11210  ax-rrecex 11211  ax-cnre 11212  ax-pre-lttri 11213  ax-pre-lttrn 11214  ax-pre-ltadd 11215  ax-pre-mulgt0 11216
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3373  df-reu 3374  df-rab 3430  df-v 3473  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4909  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5576  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5633  df-we 5635  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-pred 6305  df-ord 6372  df-on 6373  df-lim 6374  df-suc 6375  df-iota 6500  df-fun 6550  df-fn 6551  df-f 6552  df-f1 6553  df-fo 6554  df-f1o 6555  df-fv 6556  df-riota 7376  df-ov 7423  df-oprab 7424  df-mpo 7425  df-om 7871  df-1st 7993  df-2nd 7994  df-frecs 8287  df-wrecs 8318  df-recs 8392  df-rdg 8431  df-er 8725  df-en 8965  df-dom 8966  df-sdom 8967  df-pnf 11281  df-mnf 11282  df-xr 11283  df-ltxr 11284  df-le 11285  df-sub 11477  df-neg 11478  df-nn 12244  df-2 12306  df-sets 17133  df-slot 17151  df-ndx 17163  df-base 17181  df-ress 17210  df-plusg 17246  df-0g 17423  df-mgm 18600  df-sgrp 18679  df-mnd 18695  df-submnd 18741  df-grp 18893  df-minusg 18894  df-sbg 18895  df-cmn 19737  df-abl 19738  df-mgp 20075  df-rng 20093  df-ur 20122  df-ring 20175  df-cring 20176  df-erl 32982
This theorem is referenced by:  rloccring  32997
  Copyright terms: Public domain W3C validator
OSZAR »