![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > eupthfi | Structured version Visualization version GIF version |
Description: Any graph with an Eulerian path is of finite size, i.e. with a finite number of edges. (Contributed by Mario Carneiro, 7-Apr-2015.) (Revised by AV, 18-Feb-2021.) |
Ref | Expression |
---|---|
eupths.i | ⊢ 𝐼 = (iEdg‘𝐺) |
Ref | Expression |
---|---|
eupthfi | ⊢ (𝐹(EulerPaths‘𝐺)𝑃 → dom 𝐼 ∈ Fin) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fzofi 13973 | . 2 ⊢ (0..^(♯‘𝐹)) ∈ Fin | |
2 | eupths.i | . . . 4 ⊢ 𝐼 = (iEdg‘𝐺) | |
3 | 2 | eupthf1o 30080 | . . 3 ⊢ (𝐹(EulerPaths‘𝐺)𝑃 → 𝐹:(0..^(♯‘𝐹))–1-1-onto→dom 𝐼) |
4 | ovex 7451 | . . . 4 ⊢ (0..^(♯‘𝐹)) ∈ V | |
5 | 4 | f1oen 8993 | . . 3 ⊢ (𝐹:(0..^(♯‘𝐹))–1-1-onto→dom 𝐼 → (0..^(♯‘𝐹)) ≈ dom 𝐼) |
6 | ensym 9023 | . . 3 ⊢ ((0..^(♯‘𝐹)) ≈ dom 𝐼 → dom 𝐼 ≈ (0..^(♯‘𝐹))) | |
7 | 3, 5, 6 | 3syl 18 | . 2 ⊢ (𝐹(EulerPaths‘𝐺)𝑃 → dom 𝐼 ≈ (0..^(♯‘𝐹))) |
8 | enfii 9213 | . 2 ⊢ (((0..^(♯‘𝐹)) ∈ Fin ∧ dom 𝐼 ≈ (0..^(♯‘𝐹))) → dom 𝐼 ∈ Fin) | |
9 | 1, 7, 8 | sylancr 585 | 1 ⊢ (𝐹(EulerPaths‘𝐺)𝑃 → dom 𝐼 ∈ Fin) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1533 ∈ wcel 2098 class class class wbr 5149 dom cdm 5678 –1-1-onto→wf1o 6547 ‘cfv 6548 (class class class)co 7418 ≈ cen 8960 Fincfn 8963 0cc0 11139 ..^cfzo 13660 ♯chash 14323 iEdgciedg 28876 EulerPathsceupth 30073 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5365 ax-pr 5429 ax-un 7740 ax-cnex 11195 ax-resscn 11196 ax-1cn 11197 ax-icn 11198 ax-addcl 11199 ax-addrcl 11200 ax-mulcl 11201 ax-mulrcl 11202 ax-mulcom 11203 ax-addass 11204 ax-mulass 11205 ax-distr 11206 ax-i2m1 11207 ax-1ne0 11208 ax-1rid 11209 ax-rnegex 11210 ax-rrecex 11211 ax-cnre 11212 ax-pre-lttri 11213 ax-pre-lttrn 11214 ax-pre-ltadd 11215 ax-pre-mulgt0 11216 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2930 df-nel 3036 df-ral 3051 df-rex 3060 df-reu 3364 df-rab 3419 df-v 3463 df-sbc 3774 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3964 df-nul 4323 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4910 df-iun 4999 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5576 df-eprel 5582 df-po 5590 df-so 5591 df-fr 5633 df-we 5635 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-pred 6306 df-ord 6373 df-on 6374 df-lim 6375 df-suc 6376 df-iota 6500 df-fun 6550 df-fn 6551 df-f 6552 df-f1 6553 df-fo 6554 df-f1o 6555 df-fv 6556 df-riota 7374 df-ov 7421 df-oprab 7422 df-mpo 7423 df-om 7871 df-1st 7993 df-2nd 7994 df-frecs 8286 df-wrecs 8317 df-recs 8391 df-rdg 8430 df-1o 8486 df-er 8724 df-en 8964 df-dom 8965 df-sdom 8966 df-fin 8967 df-pnf 11281 df-mnf 11282 df-xr 11283 df-ltxr 11284 df-le 11285 df-sub 11477 df-neg 11478 df-nn 12244 df-n0 12504 df-z 12590 df-uz 12854 df-fz 13518 df-fzo 13661 df-wlks 29479 df-trls 29572 df-eupth 30074 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |