Step | Hyp | Ref
| Expression |
1 | | evlselvlem.h |
. 2
⊢ 𝐻 = (𝑐 ∈ 𝐶, 𝑒 ∈ 𝐸 ↦ (𝑐 ∪ 𝑒)) |
2 | | evlselvlem.c |
. . . . . . 7
⊢ 𝐶 = {𝑓 ∈ (ℕ0
↑m (𝐼
∖ 𝐽)) ∣ (◡𝑓 “ ℕ) ∈
Fin} |
3 | 2 | psrbagf 21845 |
. . . . . 6
⊢ (𝑐 ∈ 𝐶 → 𝑐:(𝐼 ∖ 𝐽)⟶ℕ0) |
4 | 3 | ad2antrl 727 |
. . . . 5
⊢ ((𝜑 ∧ (𝑐 ∈ 𝐶 ∧ 𝑒 ∈ 𝐸)) → 𝑐:(𝐼 ∖ 𝐽)⟶ℕ0) |
5 | | evlselvlem.e |
. . . . . . 7
⊢ 𝐸 = {𝑔 ∈ (ℕ0
↑m 𝐽)
∣ (◡𝑔 “ ℕ) ∈
Fin} |
6 | 5 | psrbagf 21845 |
. . . . . 6
⊢ (𝑒 ∈ 𝐸 → 𝑒:𝐽⟶ℕ0) |
7 | 6 | ad2antll 728 |
. . . . 5
⊢ ((𝜑 ∧ (𝑐 ∈ 𝐶 ∧ 𝑒 ∈ 𝐸)) → 𝑒:𝐽⟶ℕ0) |
8 | | disjdifr 4469 |
. . . . . 6
⊢ ((𝐼 ∖ 𝐽) ∩ 𝐽) = ∅ |
9 | 8 | a1i 11 |
. . . . 5
⊢ ((𝜑 ∧ (𝑐 ∈ 𝐶 ∧ 𝑒 ∈ 𝐸)) → ((𝐼 ∖ 𝐽) ∩ 𝐽) = ∅) |
10 | 4, 7, 9 | fun2d 6756 |
. . . 4
⊢ ((𝜑 ∧ (𝑐 ∈ 𝐶 ∧ 𝑒 ∈ 𝐸)) → (𝑐 ∪ 𝑒):((𝐼 ∖ 𝐽) ∪ 𝐽)⟶ℕ0) |
11 | | evlselvlem.j |
. . . . . . 7
⊢ (𝜑 → 𝐽 ⊆ 𝐼) |
12 | | undifr 4479 |
. . . . . . 7
⊢ (𝐽 ⊆ 𝐼 ↔ ((𝐼 ∖ 𝐽) ∪ 𝐽) = 𝐼) |
13 | 11, 12 | sylib 217 |
. . . . . 6
⊢ (𝜑 → ((𝐼 ∖ 𝐽) ∪ 𝐽) = 𝐼) |
14 | 13 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ (𝑐 ∈ 𝐶 ∧ 𝑒 ∈ 𝐸)) → ((𝐼 ∖ 𝐽) ∪ 𝐽) = 𝐼) |
15 | 14 | feq2d 6703 |
. . . 4
⊢ ((𝜑 ∧ (𝑐 ∈ 𝐶 ∧ 𝑒 ∈ 𝐸)) → ((𝑐 ∪ 𝑒):((𝐼 ∖ 𝐽) ∪ 𝐽)⟶ℕ0 ↔ (𝑐 ∪ 𝑒):𝐼⟶ℕ0)) |
16 | 10, 15 | mpbid 231 |
. . 3
⊢ ((𝜑 ∧ (𝑐 ∈ 𝐶 ∧ 𝑒 ∈ 𝐸)) → (𝑐 ∪ 𝑒):𝐼⟶ℕ0) |
17 | | unexg 7746 |
. . . . . 6
⊢ ((𝑐 ∈ 𝐶 ∧ 𝑒 ∈ 𝐸) → (𝑐 ∪ 𝑒) ∈ V) |
18 | 17 | adantl 481 |
. . . . 5
⊢ ((𝜑 ∧ (𝑐 ∈ 𝐶 ∧ 𝑒 ∈ 𝐸)) → (𝑐 ∪ 𝑒) ∈ V) |
19 | | 0zd 12595 |
. . . . 5
⊢ ((𝜑 ∧ (𝑐 ∈ 𝐶 ∧ 𝑒 ∈ 𝐸)) → 0 ∈ ℤ) |
20 | 10 | ffund 6721 |
. . . . 5
⊢ ((𝜑 ∧ (𝑐 ∈ 𝐶 ∧ 𝑒 ∈ 𝐸)) → Fun (𝑐 ∪ 𝑒)) |
21 | 2 | psrbagfsupp 21847 |
. . . . . . 7
⊢ (𝑐 ∈ 𝐶 → 𝑐 finSupp 0) |
22 | 21 | ad2antrl 727 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑐 ∈ 𝐶 ∧ 𝑒 ∈ 𝐸)) → 𝑐 finSupp 0) |
23 | 5 | psrbagfsupp 21847 |
. . . . . . 7
⊢ (𝑒 ∈ 𝐸 → 𝑒 finSupp 0) |
24 | 23 | ad2antll 728 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑐 ∈ 𝐶 ∧ 𝑒 ∈ 𝐸)) → 𝑒 finSupp 0) |
25 | 22, 24 | fsuppun 9405 |
. . . . 5
⊢ ((𝜑 ∧ (𝑐 ∈ 𝐶 ∧ 𝑒 ∈ 𝐸)) → ((𝑐 ∪ 𝑒) supp 0) ∈ Fin) |
26 | 18, 19, 20, 25 | isfsuppd 9385 |
. . . 4
⊢ ((𝜑 ∧ (𝑐 ∈ 𝐶 ∧ 𝑒 ∈ 𝐸)) → (𝑐 ∪ 𝑒) finSupp 0) |
27 | | fcdmnn0fsuppg 12556 |
. . . . 5
⊢ (((𝑐 ∪ 𝑒) ∈ V ∧ (𝑐 ∪ 𝑒):((𝐼 ∖ 𝐽) ∪ 𝐽)⟶ℕ0) → ((𝑐 ∪ 𝑒) finSupp 0 ↔ (◡(𝑐 ∪ 𝑒) “ ℕ) ∈
Fin)) |
28 | 18, 10, 27 | syl2anc 583 |
. . . 4
⊢ ((𝜑 ∧ (𝑐 ∈ 𝐶 ∧ 𝑒 ∈ 𝐸)) → ((𝑐 ∪ 𝑒) finSupp 0 ↔ (◡(𝑐 ∪ 𝑒) “ ℕ) ∈
Fin)) |
29 | 26, 28 | mpbid 231 |
. . 3
⊢ ((𝜑 ∧ (𝑐 ∈ 𝐶 ∧ 𝑒 ∈ 𝐸)) → (◡(𝑐 ∪ 𝑒) “ ℕ) ∈
Fin) |
30 | | evlselvlem.i |
. . . . 5
⊢ (𝜑 → 𝐼 ∈ 𝑉) |
31 | 30 | adantr 480 |
. . . 4
⊢ ((𝜑 ∧ (𝑐 ∈ 𝐶 ∧ 𝑒 ∈ 𝐸)) → 𝐼 ∈ 𝑉) |
32 | | evlselvlem.d |
. . . . 5
⊢ 𝐷 = {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} |
33 | 32 | psrbag 21844 |
. . . 4
⊢ (𝐼 ∈ 𝑉 → ((𝑐 ∪ 𝑒) ∈ 𝐷 ↔ ((𝑐 ∪ 𝑒):𝐼⟶ℕ0 ∧ (◡(𝑐 ∪ 𝑒) “ ℕ) ∈
Fin))) |
34 | 31, 33 | syl 17 |
. . 3
⊢ ((𝜑 ∧ (𝑐 ∈ 𝐶 ∧ 𝑒 ∈ 𝐸)) → ((𝑐 ∪ 𝑒) ∈ 𝐷 ↔ ((𝑐 ∪ 𝑒):𝐼⟶ℕ0 ∧ (◡(𝑐 ∪ 𝑒) “ ℕ) ∈
Fin))) |
35 | 16, 29, 34 | mpbir2and 712 |
. 2
⊢ ((𝜑 ∧ (𝑐 ∈ 𝐶 ∧ 𝑒 ∈ 𝐸)) → (𝑐 ∪ 𝑒) ∈ 𝐷) |
36 | 30 | adantr 480 |
. . 3
⊢ ((𝜑 ∧ 𝑑 ∈ 𝐷) → 𝐼 ∈ 𝑉) |
37 | | difssd 4129 |
. . 3
⊢ ((𝜑 ∧ 𝑑 ∈ 𝐷) → (𝐼 ∖ 𝐽) ⊆ 𝐼) |
38 | | simpr 484 |
. . 3
⊢ ((𝜑 ∧ 𝑑 ∈ 𝐷) → 𝑑 ∈ 𝐷) |
39 | 32, 2, 36, 37, 38 | psrbagres 41767 |
. 2
⊢ ((𝜑 ∧ 𝑑 ∈ 𝐷) → (𝑑 ↾ (𝐼 ∖ 𝐽)) ∈ 𝐶) |
40 | 11 | adantr 480 |
. . 3
⊢ ((𝜑 ∧ 𝑑 ∈ 𝐷) → 𝐽 ⊆ 𝐼) |
41 | 32, 5, 36, 40, 38 | psrbagres 41767 |
. 2
⊢ ((𝜑 ∧ 𝑑 ∈ 𝐷) → (𝑑 ↾ 𝐽) ∈ 𝐸) |
42 | 32 | psrbagf 21845 |
. . . . . . . 8
⊢ (𝑑 ∈ 𝐷 → 𝑑:𝐼⟶ℕ0) |
43 | 42 | adantl 481 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑑 ∈ 𝐷) → 𝑑:𝐼⟶ℕ0) |
44 | 43 | freld 6723 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑑 ∈ 𝐷) → Rel 𝑑) |
45 | 43 | fdmd 6728 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑑 ∈ 𝐷) → dom 𝑑 = 𝐼) |
46 | 40, 12 | sylib 217 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑑 ∈ 𝐷) → ((𝐼 ∖ 𝐽) ∪ 𝐽) = 𝐼) |
47 | 45, 46 | eqtr4d 2771 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑑 ∈ 𝐷) → dom 𝑑 = ((𝐼 ∖ 𝐽) ∪ 𝐽)) |
48 | 8 | a1i 11 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑑 ∈ 𝐷) → ((𝐼 ∖ 𝐽) ∩ 𝐽) = ∅) |
49 | | reldisjun 6031 |
. . . . . 6
⊢ ((Rel
𝑑 ∧ dom 𝑑 = ((𝐼 ∖ 𝐽) ∪ 𝐽) ∧ ((𝐼 ∖ 𝐽) ∩ 𝐽) = ∅) → 𝑑 = ((𝑑 ↾ (𝐼 ∖ 𝐽)) ∪ (𝑑 ↾ 𝐽))) |
50 | 44, 47, 48, 49 | syl3anc 1369 |
. . . . 5
⊢ ((𝜑 ∧ 𝑑 ∈ 𝐷) → 𝑑 = ((𝑑 ↾ (𝐼 ∖ 𝐽)) ∪ (𝑑 ↾ 𝐽))) |
51 | 50 | adantrl 715 |
. . . 4
⊢ ((𝜑 ∧ ((𝑐 ∈ 𝐶 ∧ 𝑒 ∈ 𝐸) ∧ 𝑑 ∈ 𝐷)) → 𝑑 = ((𝑑 ↾ (𝐼 ∖ 𝐽)) ∪ (𝑑 ↾ 𝐽))) |
52 | | uneq12 4155 |
. . . . 5
⊢ ((𝑐 = (𝑑 ↾ (𝐼 ∖ 𝐽)) ∧ 𝑒 = (𝑑 ↾ 𝐽)) → (𝑐 ∪ 𝑒) = ((𝑑 ↾ (𝐼 ∖ 𝐽)) ∪ (𝑑 ↾ 𝐽))) |
53 | 52 | eqeq2d 2739 |
. . . 4
⊢ ((𝑐 = (𝑑 ↾ (𝐼 ∖ 𝐽)) ∧ 𝑒 = (𝑑 ↾ 𝐽)) → (𝑑 = (𝑐 ∪ 𝑒) ↔ 𝑑 = ((𝑑 ↾ (𝐼 ∖ 𝐽)) ∪ (𝑑 ↾ 𝐽)))) |
54 | 51, 53 | syl5ibrcom 246 |
. . 3
⊢ ((𝜑 ∧ ((𝑐 ∈ 𝐶 ∧ 𝑒 ∈ 𝐸) ∧ 𝑑 ∈ 𝐷)) → ((𝑐 = (𝑑 ↾ (𝐼 ∖ 𝐽)) ∧ 𝑒 = (𝑑 ↾ 𝐽)) → 𝑑 = (𝑐 ∪ 𝑒))) |
55 | 4 | ffnd 6718 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑐 ∈ 𝐶 ∧ 𝑒 ∈ 𝐸)) → 𝑐 Fn (𝐼 ∖ 𝐽)) |
56 | 7 | ffnd 6718 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑐 ∈ 𝐶 ∧ 𝑒 ∈ 𝐸)) → 𝑒 Fn 𝐽) |
57 | | fnunres1 6661 |
. . . . . . . 8
⊢ ((𝑐 Fn (𝐼 ∖ 𝐽) ∧ 𝑒 Fn 𝐽 ∧ ((𝐼 ∖ 𝐽) ∩ 𝐽) = ∅) → ((𝑐 ∪ 𝑒) ↾ (𝐼 ∖ 𝐽)) = 𝑐) |
58 | 55, 56, 9, 57 | syl3anc 1369 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑐 ∈ 𝐶 ∧ 𝑒 ∈ 𝐸)) → ((𝑐 ∪ 𝑒) ↾ (𝐼 ∖ 𝐽)) = 𝑐) |
59 | 58 | eqcomd 2734 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑐 ∈ 𝐶 ∧ 𝑒 ∈ 𝐸)) → 𝑐 = ((𝑐 ∪ 𝑒) ↾ (𝐼 ∖ 𝐽))) |
60 | | fnunres2 6662 |
. . . . . . . 8
⊢ ((𝑐 Fn (𝐼 ∖ 𝐽) ∧ 𝑒 Fn 𝐽 ∧ ((𝐼 ∖ 𝐽) ∩ 𝐽) = ∅) → ((𝑐 ∪ 𝑒) ↾ 𝐽) = 𝑒) |
61 | 55, 56, 9, 60 | syl3anc 1369 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑐 ∈ 𝐶 ∧ 𝑒 ∈ 𝐸)) → ((𝑐 ∪ 𝑒) ↾ 𝐽) = 𝑒) |
62 | 61 | eqcomd 2734 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑐 ∈ 𝐶 ∧ 𝑒 ∈ 𝐸)) → 𝑒 = ((𝑐 ∪ 𝑒) ↾ 𝐽)) |
63 | 59, 62 | jca 511 |
. . . . 5
⊢ ((𝜑 ∧ (𝑐 ∈ 𝐶 ∧ 𝑒 ∈ 𝐸)) → (𝑐 = ((𝑐 ∪ 𝑒) ↾ (𝐼 ∖ 𝐽)) ∧ 𝑒 = ((𝑐 ∪ 𝑒) ↾ 𝐽))) |
64 | 63 | adantrr 716 |
. . . 4
⊢ ((𝜑 ∧ ((𝑐 ∈ 𝐶 ∧ 𝑒 ∈ 𝐸) ∧ 𝑑 ∈ 𝐷)) → (𝑐 = ((𝑐 ∪ 𝑒) ↾ (𝐼 ∖ 𝐽)) ∧ 𝑒 = ((𝑐 ∪ 𝑒) ↾ 𝐽))) |
65 | | reseq1 5974 |
. . . . . 6
⊢ (𝑑 = (𝑐 ∪ 𝑒) → (𝑑 ↾ (𝐼 ∖ 𝐽)) = ((𝑐 ∪ 𝑒) ↾ (𝐼 ∖ 𝐽))) |
66 | 65 | eqeq2d 2739 |
. . . . 5
⊢ (𝑑 = (𝑐 ∪ 𝑒) → (𝑐 = (𝑑 ↾ (𝐼 ∖ 𝐽)) ↔ 𝑐 = ((𝑐 ∪ 𝑒) ↾ (𝐼 ∖ 𝐽)))) |
67 | | reseq1 5974 |
. . . . . 6
⊢ (𝑑 = (𝑐 ∪ 𝑒) → (𝑑 ↾ 𝐽) = ((𝑐 ∪ 𝑒) ↾ 𝐽)) |
68 | 67 | eqeq2d 2739 |
. . . . 5
⊢ (𝑑 = (𝑐 ∪ 𝑒) → (𝑒 = (𝑑 ↾ 𝐽) ↔ 𝑒 = ((𝑐 ∪ 𝑒) ↾ 𝐽))) |
69 | 66, 68 | anbi12d 631 |
. . . 4
⊢ (𝑑 = (𝑐 ∪ 𝑒) → ((𝑐 = (𝑑 ↾ (𝐼 ∖ 𝐽)) ∧ 𝑒 = (𝑑 ↾ 𝐽)) ↔ (𝑐 = ((𝑐 ∪ 𝑒) ↾ (𝐼 ∖ 𝐽)) ∧ 𝑒 = ((𝑐 ∪ 𝑒) ↾ 𝐽)))) |
70 | 64, 69 | syl5ibrcom 246 |
. . 3
⊢ ((𝜑 ∧ ((𝑐 ∈ 𝐶 ∧ 𝑒 ∈ 𝐸) ∧ 𝑑 ∈ 𝐷)) → (𝑑 = (𝑐 ∪ 𝑒) → (𝑐 = (𝑑 ↾ (𝐼 ∖ 𝐽)) ∧ 𝑒 = (𝑑 ↾ 𝐽)))) |
71 | 54, 70 | impbid 211 |
. 2
⊢ ((𝜑 ∧ ((𝑐 ∈ 𝐶 ∧ 𝑒 ∈ 𝐸) ∧ 𝑑 ∈ 𝐷)) → ((𝑐 = (𝑑 ↾ (𝐼 ∖ 𝐽)) ∧ 𝑒 = (𝑑 ↾ 𝐽)) ↔ 𝑑 = (𝑐 ∪ 𝑒))) |
72 | 1, 35, 39, 41, 71 | f1o2d2 41715 |
1
⊢ (𝜑 → 𝐻:(𝐶 × 𝐸)–1-1-onto→𝐷) |