Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  evlselvlem Structured version   Visualization version   GIF version

Theorem evlselvlem 41810
Description: Lemma for evlselv 41811. Used to re-index to and from bags of variables in 𝐼 and bags of variables in the subsets 𝐽 and 𝐼𝐽. (Contributed by SN, 10-Mar-2025.)
Hypotheses
Ref Expression
evlselvlem.d 𝐷 = { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}
evlselvlem.e 𝐸 = {𝑔 ∈ (ℕ0m 𝐽) ∣ (𝑔 “ ℕ) ∈ Fin}
evlselvlem.c 𝐶 = {𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin}
evlselvlem.h 𝐻 = (𝑐𝐶, 𝑒𝐸 ↦ (𝑐𝑒))
evlselvlem.i (𝜑𝐼𝑉)
evlselvlem.j (𝜑𝐽𝐼)
Assertion
Ref Expression
evlselvlem (𝜑𝐻:(𝐶 × 𝐸)–1-1-onto𝐷)
Distinct variable groups:   𝑓,𝑐,𝐼   𝑓,𝐽   𝐼,𝑐,𝑒,   𝐽,𝑐,𝑒,𝑔   𝐶,𝑐,𝑒   𝐷,𝑐,𝑒   𝐸,𝑐,𝑒   𝜑,𝑐,𝑒
Allowed substitution hints:   𝜑(𝑓,𝑔,)   𝐶(𝑓,𝑔,)   𝐷(𝑓,𝑔,)   𝐸(𝑓,𝑔,)   𝐻(𝑒,𝑓,𝑔,,𝑐)   𝐼(𝑔)   𝐽()   𝑉(𝑒,𝑓,𝑔,,𝑐)

Proof of Theorem evlselvlem
Dummy variable 𝑑 is distinct from all other variables.
StepHypRef Expression
1 evlselvlem.h . 2 𝐻 = (𝑐𝐶, 𝑒𝐸 ↦ (𝑐𝑒))
2 evlselvlem.c . . . . . . 7 𝐶 = {𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin}
32psrbagf 21845 . . . . . 6 (𝑐𝐶𝑐:(𝐼𝐽)⟶ℕ0)
43ad2antrl 727 . . . . 5 ((𝜑 ∧ (𝑐𝐶𝑒𝐸)) → 𝑐:(𝐼𝐽)⟶ℕ0)
5 evlselvlem.e . . . . . . 7 𝐸 = {𝑔 ∈ (ℕ0m 𝐽) ∣ (𝑔 “ ℕ) ∈ Fin}
65psrbagf 21845 . . . . . 6 (𝑒𝐸𝑒:𝐽⟶ℕ0)
76ad2antll 728 . . . . 5 ((𝜑 ∧ (𝑐𝐶𝑒𝐸)) → 𝑒:𝐽⟶ℕ0)
8 disjdifr 4469 . . . . . 6 ((𝐼𝐽) ∩ 𝐽) = ∅
98a1i 11 . . . . 5 ((𝜑 ∧ (𝑐𝐶𝑒𝐸)) → ((𝐼𝐽) ∩ 𝐽) = ∅)
104, 7, 9fun2d 6756 . . . 4 ((𝜑 ∧ (𝑐𝐶𝑒𝐸)) → (𝑐𝑒):((𝐼𝐽) ∪ 𝐽)⟶ℕ0)
11 evlselvlem.j . . . . . . 7 (𝜑𝐽𝐼)
12 undifr 4479 . . . . . . 7 (𝐽𝐼 ↔ ((𝐼𝐽) ∪ 𝐽) = 𝐼)
1311, 12sylib 217 . . . . . 6 (𝜑 → ((𝐼𝐽) ∪ 𝐽) = 𝐼)
1413adantr 480 . . . . 5 ((𝜑 ∧ (𝑐𝐶𝑒𝐸)) → ((𝐼𝐽) ∪ 𝐽) = 𝐼)
1514feq2d 6703 . . . 4 ((𝜑 ∧ (𝑐𝐶𝑒𝐸)) → ((𝑐𝑒):((𝐼𝐽) ∪ 𝐽)⟶ℕ0 ↔ (𝑐𝑒):𝐼⟶ℕ0))
1610, 15mpbid 231 . . 3 ((𝜑 ∧ (𝑐𝐶𝑒𝐸)) → (𝑐𝑒):𝐼⟶ℕ0)
17 unexg 7746 . . . . . 6 ((𝑐𝐶𝑒𝐸) → (𝑐𝑒) ∈ V)
1817adantl 481 . . . . 5 ((𝜑 ∧ (𝑐𝐶𝑒𝐸)) → (𝑐𝑒) ∈ V)
19 0zd 12595 . . . . 5 ((𝜑 ∧ (𝑐𝐶𝑒𝐸)) → 0 ∈ ℤ)
2010ffund 6721 . . . . 5 ((𝜑 ∧ (𝑐𝐶𝑒𝐸)) → Fun (𝑐𝑒))
212psrbagfsupp 21847 . . . . . . 7 (𝑐𝐶𝑐 finSupp 0)
2221ad2antrl 727 . . . . . 6 ((𝜑 ∧ (𝑐𝐶𝑒𝐸)) → 𝑐 finSupp 0)
235psrbagfsupp 21847 . . . . . . 7 (𝑒𝐸𝑒 finSupp 0)
2423ad2antll 728 . . . . . 6 ((𝜑 ∧ (𝑐𝐶𝑒𝐸)) → 𝑒 finSupp 0)
2522, 24fsuppun 9405 . . . . 5 ((𝜑 ∧ (𝑐𝐶𝑒𝐸)) → ((𝑐𝑒) supp 0) ∈ Fin)
2618, 19, 20, 25isfsuppd 9385 . . . 4 ((𝜑 ∧ (𝑐𝐶𝑒𝐸)) → (𝑐𝑒) finSupp 0)
27 fcdmnn0fsuppg 12556 . . . . 5 (((𝑐𝑒) ∈ V ∧ (𝑐𝑒):((𝐼𝐽) ∪ 𝐽)⟶ℕ0) → ((𝑐𝑒) finSupp 0 ↔ ((𝑐𝑒) “ ℕ) ∈ Fin))
2818, 10, 27syl2anc 583 . . . 4 ((𝜑 ∧ (𝑐𝐶𝑒𝐸)) → ((𝑐𝑒) finSupp 0 ↔ ((𝑐𝑒) “ ℕ) ∈ Fin))
2926, 28mpbid 231 . . 3 ((𝜑 ∧ (𝑐𝐶𝑒𝐸)) → ((𝑐𝑒) “ ℕ) ∈ Fin)
30 evlselvlem.i . . . . 5 (𝜑𝐼𝑉)
3130adantr 480 . . . 4 ((𝜑 ∧ (𝑐𝐶𝑒𝐸)) → 𝐼𝑉)
32 evlselvlem.d . . . . 5 𝐷 = { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}
3332psrbag 21844 . . . 4 (𝐼𝑉 → ((𝑐𝑒) ∈ 𝐷 ↔ ((𝑐𝑒):𝐼⟶ℕ0 ∧ ((𝑐𝑒) “ ℕ) ∈ Fin)))
3431, 33syl 17 . . 3 ((𝜑 ∧ (𝑐𝐶𝑒𝐸)) → ((𝑐𝑒) ∈ 𝐷 ↔ ((𝑐𝑒):𝐼⟶ℕ0 ∧ ((𝑐𝑒) “ ℕ) ∈ Fin)))
3516, 29, 34mpbir2and 712 . 2 ((𝜑 ∧ (𝑐𝐶𝑒𝐸)) → (𝑐𝑒) ∈ 𝐷)
3630adantr 480 . . 3 ((𝜑𝑑𝐷) → 𝐼𝑉)
37 difssd 4129 . . 3 ((𝜑𝑑𝐷) → (𝐼𝐽) ⊆ 𝐼)
38 simpr 484 . . 3 ((𝜑𝑑𝐷) → 𝑑𝐷)
3932, 2, 36, 37, 38psrbagres 41767 . 2 ((𝜑𝑑𝐷) → (𝑑 ↾ (𝐼𝐽)) ∈ 𝐶)
4011adantr 480 . . 3 ((𝜑𝑑𝐷) → 𝐽𝐼)
4132, 5, 36, 40, 38psrbagres 41767 . 2 ((𝜑𝑑𝐷) → (𝑑𝐽) ∈ 𝐸)
4232psrbagf 21845 . . . . . . . 8 (𝑑𝐷𝑑:𝐼⟶ℕ0)
4342adantl 481 . . . . . . 7 ((𝜑𝑑𝐷) → 𝑑:𝐼⟶ℕ0)
4443freld 6723 . . . . . 6 ((𝜑𝑑𝐷) → Rel 𝑑)
4543fdmd 6728 . . . . . . 7 ((𝜑𝑑𝐷) → dom 𝑑 = 𝐼)
4640, 12sylib 217 . . . . . . 7 ((𝜑𝑑𝐷) → ((𝐼𝐽) ∪ 𝐽) = 𝐼)
4745, 46eqtr4d 2771 . . . . . 6 ((𝜑𝑑𝐷) → dom 𝑑 = ((𝐼𝐽) ∪ 𝐽))
488a1i 11 . . . . . 6 ((𝜑𝑑𝐷) → ((𝐼𝐽) ∩ 𝐽) = ∅)
49 reldisjun 6031 . . . . . 6 ((Rel 𝑑 ∧ dom 𝑑 = ((𝐼𝐽) ∪ 𝐽) ∧ ((𝐼𝐽) ∩ 𝐽) = ∅) → 𝑑 = ((𝑑 ↾ (𝐼𝐽)) ∪ (𝑑𝐽)))
5044, 47, 48, 49syl3anc 1369 . . . . 5 ((𝜑𝑑𝐷) → 𝑑 = ((𝑑 ↾ (𝐼𝐽)) ∪ (𝑑𝐽)))
5150adantrl 715 . . . 4 ((𝜑 ∧ ((𝑐𝐶𝑒𝐸) ∧ 𝑑𝐷)) → 𝑑 = ((𝑑 ↾ (𝐼𝐽)) ∪ (𝑑𝐽)))
52 uneq12 4155 . . . . 5 ((𝑐 = (𝑑 ↾ (𝐼𝐽)) ∧ 𝑒 = (𝑑𝐽)) → (𝑐𝑒) = ((𝑑 ↾ (𝐼𝐽)) ∪ (𝑑𝐽)))
5352eqeq2d 2739 . . . 4 ((𝑐 = (𝑑 ↾ (𝐼𝐽)) ∧ 𝑒 = (𝑑𝐽)) → (𝑑 = (𝑐𝑒) ↔ 𝑑 = ((𝑑 ↾ (𝐼𝐽)) ∪ (𝑑𝐽))))
5451, 53syl5ibrcom 246 . . 3 ((𝜑 ∧ ((𝑐𝐶𝑒𝐸) ∧ 𝑑𝐷)) → ((𝑐 = (𝑑 ↾ (𝐼𝐽)) ∧ 𝑒 = (𝑑𝐽)) → 𝑑 = (𝑐𝑒)))
554ffnd 6718 . . . . . . . 8 ((𝜑 ∧ (𝑐𝐶𝑒𝐸)) → 𝑐 Fn (𝐼𝐽))
567ffnd 6718 . . . . . . . 8 ((𝜑 ∧ (𝑐𝐶𝑒𝐸)) → 𝑒 Fn 𝐽)
57 fnunres1 6661 . . . . . . . 8 ((𝑐 Fn (𝐼𝐽) ∧ 𝑒 Fn 𝐽 ∧ ((𝐼𝐽) ∩ 𝐽) = ∅) → ((𝑐𝑒) ↾ (𝐼𝐽)) = 𝑐)
5855, 56, 9, 57syl3anc 1369 . . . . . . 7 ((𝜑 ∧ (𝑐𝐶𝑒𝐸)) → ((𝑐𝑒) ↾ (𝐼𝐽)) = 𝑐)
5958eqcomd 2734 . . . . . 6 ((𝜑 ∧ (𝑐𝐶𝑒𝐸)) → 𝑐 = ((𝑐𝑒) ↾ (𝐼𝐽)))
60 fnunres2 6662 . . . . . . . 8 ((𝑐 Fn (𝐼𝐽) ∧ 𝑒 Fn 𝐽 ∧ ((𝐼𝐽) ∩ 𝐽) = ∅) → ((𝑐𝑒) ↾ 𝐽) = 𝑒)
6155, 56, 9, 60syl3anc 1369 . . . . . . 7 ((𝜑 ∧ (𝑐𝐶𝑒𝐸)) → ((𝑐𝑒) ↾ 𝐽) = 𝑒)
6261eqcomd 2734 . . . . . 6 ((𝜑 ∧ (𝑐𝐶𝑒𝐸)) → 𝑒 = ((𝑐𝑒) ↾ 𝐽))
6359, 62jca 511 . . . . 5 ((𝜑 ∧ (𝑐𝐶𝑒𝐸)) → (𝑐 = ((𝑐𝑒) ↾ (𝐼𝐽)) ∧ 𝑒 = ((𝑐𝑒) ↾ 𝐽)))
6463adantrr 716 . . . 4 ((𝜑 ∧ ((𝑐𝐶𝑒𝐸) ∧ 𝑑𝐷)) → (𝑐 = ((𝑐𝑒) ↾ (𝐼𝐽)) ∧ 𝑒 = ((𝑐𝑒) ↾ 𝐽)))
65 reseq1 5974 . . . . . 6 (𝑑 = (𝑐𝑒) → (𝑑 ↾ (𝐼𝐽)) = ((𝑐𝑒) ↾ (𝐼𝐽)))
6665eqeq2d 2739 . . . . 5 (𝑑 = (𝑐𝑒) → (𝑐 = (𝑑 ↾ (𝐼𝐽)) ↔ 𝑐 = ((𝑐𝑒) ↾ (𝐼𝐽))))
67 reseq1 5974 . . . . . 6 (𝑑 = (𝑐𝑒) → (𝑑𝐽) = ((𝑐𝑒) ↾ 𝐽))
6867eqeq2d 2739 . . . . 5 (𝑑 = (𝑐𝑒) → (𝑒 = (𝑑𝐽) ↔ 𝑒 = ((𝑐𝑒) ↾ 𝐽)))
6966, 68anbi12d 631 . . . 4 (𝑑 = (𝑐𝑒) → ((𝑐 = (𝑑 ↾ (𝐼𝐽)) ∧ 𝑒 = (𝑑𝐽)) ↔ (𝑐 = ((𝑐𝑒) ↾ (𝐼𝐽)) ∧ 𝑒 = ((𝑐𝑒) ↾ 𝐽))))
7064, 69syl5ibrcom 246 . . 3 ((𝜑 ∧ ((𝑐𝐶𝑒𝐸) ∧ 𝑑𝐷)) → (𝑑 = (𝑐𝑒) → (𝑐 = (𝑑 ↾ (𝐼𝐽)) ∧ 𝑒 = (𝑑𝐽))))
7154, 70impbid 211 . 2 ((𝜑 ∧ ((𝑐𝐶𝑒𝐸) ∧ 𝑑𝐷)) → ((𝑐 = (𝑑 ↾ (𝐼𝐽)) ∧ 𝑒 = (𝑑𝐽)) ↔ 𝑑 = (𝑐𝑒)))
721, 35, 39, 41, 71f1o2d2 41715 1 (𝜑𝐻:(𝐶 × 𝐸)–1-1-onto𝐷)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1534  wcel 2099  {crab 3428  Vcvv 3470  cdif 3942  cun 3943  cin 3944  wss 3945  c0 4319   class class class wbr 5143   × cxp 5671  ccnv 5672  dom cdm 5673  cres 5675  cima 5676  Rel wrel 5678   Fn wfn 6538  wf 6539  1-1-ontowf1o 6542  (class class class)co 7415  cmpo 7417  m cmap 8839  Fincfn 8958   finSupp cfsupp 9380  0cc0 11133  cn 12237  0cn0 12497  cz 12583
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-sep 5294  ax-nul 5301  ax-pow 5360  ax-pr 5424  ax-un 7735  ax-cnex 11189  ax-resscn 11190  ax-1cn 11191  ax-icn 11192  ax-addcl 11193  ax-addrcl 11194  ax-mulcl 11195  ax-mulrcl 11196  ax-mulcom 11197  ax-addass 11198  ax-mulass 11199  ax-distr 11200  ax-i2m1 11201  ax-1ne0 11202  ax-1rid 11203  ax-rnegex 11204  ax-rrecex 11205  ax-cnre 11206  ax-pre-lttri 11207  ax-pre-lttrn 11208  ax-pre-ltadd 11209
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2937  df-nel 3043  df-ral 3058  df-rex 3067  df-reu 3373  df-rab 3429  df-v 3472  df-sbc 3776  df-csb 3891  df-dif 3948  df-un 3950  df-in 3952  df-ss 3962  df-pss 3964  df-nul 4320  df-if 4526  df-pw 4601  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4905  df-iun 4994  df-br 5144  df-opab 5206  df-mpt 5227  df-tr 5261  df-id 5571  df-eprel 5577  df-po 5585  df-so 5586  df-fr 5628  df-we 5630  df-xp 5679  df-rel 5680  df-cnv 5681  df-co 5682  df-dm 5683  df-rn 5684  df-res 5685  df-ima 5686  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-ov 7418  df-oprab 7419  df-mpo 7420  df-om 7866  df-1st 7988  df-2nd 7989  df-supp 8161  df-frecs 8281  df-wrecs 8312  df-recs 8386  df-rdg 8425  df-1o 8481  df-er 8719  df-map 8841  df-en 8959  df-dom 8960  df-sdom 8961  df-fin 8962  df-fsupp 9381  df-pnf 11275  df-mnf 11276  df-xr 11277  df-ltxr 11278  df-le 11279  df-neg 11472  df-nn 12238  df-n0 12498  df-z 12584
This theorem is referenced by:  evlselv  41811
  Copyright terms: Public domain W3C validator
OSZAR »