MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  expubnd Structured version   Visualization version   GIF version

Theorem expubnd 14174
Description: An upper bound on 𝐴𝑁 when 2 ≤ 𝐴. (Contributed by NM, 19-Dec-2005.)
Assertion
Ref Expression
expubnd ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ0 ∧ 2 ≤ 𝐴) → (𝐴𝑁) ≤ ((2↑𝑁) · ((𝐴 − 1)↑𝑁)))

Proof of Theorem expubnd
StepHypRef Expression
1 simp1 1133 . . 3 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ0 ∧ 2 ≤ 𝐴) → 𝐴 ∈ ℝ)
2 2re 12316 . . . . 5 2 ∈ ℝ
3 peano2rem 11557 . . . . 5 (𝐴 ∈ ℝ → (𝐴 − 1) ∈ ℝ)
4 remulcl 11223 . . . . 5 ((2 ∈ ℝ ∧ (𝐴 − 1) ∈ ℝ) → (2 · (𝐴 − 1)) ∈ ℝ)
52, 3, 4sylancr 585 . . . 4 (𝐴 ∈ ℝ → (2 · (𝐴 − 1)) ∈ ℝ)
653ad2ant1 1130 . . 3 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ0 ∧ 2 ≤ 𝐴) → (2 · (𝐴 − 1)) ∈ ℝ)
7 simp2 1134 . . 3 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ0 ∧ 2 ≤ 𝐴) → 𝑁 ∈ ℕ0)
8 0le2 12344 . . . . . . 7 0 ≤ 2
9 0re 11246 . . . . . . . 8 0 ∈ ℝ
10 letr 11338 . . . . . . . 8 ((0 ∈ ℝ ∧ 2 ∈ ℝ ∧ 𝐴 ∈ ℝ) → ((0 ≤ 2 ∧ 2 ≤ 𝐴) → 0 ≤ 𝐴))
119, 2, 10mp3an12 1447 . . . . . . 7 (𝐴 ∈ ℝ → ((0 ≤ 2 ∧ 2 ≤ 𝐴) → 0 ≤ 𝐴))
128, 11mpani 694 . . . . . 6 (𝐴 ∈ ℝ → (2 ≤ 𝐴 → 0 ≤ 𝐴))
1312imp 405 . . . . 5 ((𝐴 ∈ ℝ ∧ 2 ≤ 𝐴) → 0 ≤ 𝐴)
14 resubcl 11554 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 2 ∈ ℝ) → (𝐴 − 2) ∈ ℝ)
152, 14mpan2 689 . . . . . . . 8 (𝐴 ∈ ℝ → (𝐴 − 2) ∈ ℝ)
16 leadd2 11713 . . . . . . . . 9 ((2 ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ (𝐴 − 2) ∈ ℝ) → (2 ≤ 𝐴 ↔ ((𝐴 − 2) + 2) ≤ ((𝐴 − 2) + 𝐴)))
172, 16mp3an1 1444 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ (𝐴 − 2) ∈ ℝ) → (2 ≤ 𝐴 ↔ ((𝐴 − 2) + 2) ≤ ((𝐴 − 2) + 𝐴)))
1815, 17mpdan 685 . . . . . . 7 (𝐴 ∈ ℝ → (2 ≤ 𝐴 ↔ ((𝐴 − 2) + 2) ≤ ((𝐴 − 2) + 𝐴)))
1918biimpa 475 . . . . . 6 ((𝐴 ∈ ℝ ∧ 2 ≤ 𝐴) → ((𝐴 − 2) + 2) ≤ ((𝐴 − 2) + 𝐴))
20 recn 11228 . . . . . . . 8 (𝐴 ∈ ℝ → 𝐴 ∈ ℂ)
21 2cn 12317 . . . . . . . 8 2 ∈ ℂ
22 npcan 11499 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 2 ∈ ℂ) → ((𝐴 − 2) + 2) = 𝐴)
2320, 21, 22sylancl 584 . . . . . . 7 (𝐴 ∈ ℝ → ((𝐴 − 2) + 2) = 𝐴)
2423adantr 479 . . . . . 6 ((𝐴 ∈ ℝ ∧ 2 ≤ 𝐴) → ((𝐴 − 2) + 2) = 𝐴)
25 ax-1cn 11196 . . . . . . . . . 10 1 ∈ ℂ
26 subdi 11677 . . . . . . . . . 10 ((2 ∈ ℂ ∧ 𝐴 ∈ ℂ ∧ 1 ∈ ℂ) → (2 · (𝐴 − 1)) = ((2 · 𝐴) − (2 · 1)))
2721, 25, 26mp3an13 1448 . . . . . . . . 9 (𝐴 ∈ ℂ → (2 · (𝐴 − 1)) = ((2 · 𝐴) − (2 · 1)))
28 2times 12378 . . . . . . . . . 10 (𝐴 ∈ ℂ → (2 · 𝐴) = (𝐴 + 𝐴))
29 2t1e2 12405 . . . . . . . . . . 11 (2 · 1) = 2
3029a1i 11 . . . . . . . . . 10 (𝐴 ∈ ℂ → (2 · 1) = 2)
3128, 30oveq12d 7435 . . . . . . . . 9 (𝐴 ∈ ℂ → ((2 · 𝐴) − (2 · 1)) = ((𝐴 + 𝐴) − 2))
32 addsub 11501 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 𝐴 ∈ ℂ ∧ 2 ∈ ℂ) → ((𝐴 + 𝐴) − 2) = ((𝐴 − 2) + 𝐴))
3321, 32mp3an3 1446 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝐴 ∈ ℂ) → ((𝐴 + 𝐴) − 2) = ((𝐴 − 2) + 𝐴))
3433anidms 565 . . . . . . . . 9 (𝐴 ∈ ℂ → ((𝐴 + 𝐴) − 2) = ((𝐴 − 2) + 𝐴))
3527, 31, 343eqtrrd 2770 . . . . . . . 8 (𝐴 ∈ ℂ → ((𝐴 − 2) + 𝐴) = (2 · (𝐴 − 1)))
3620, 35syl 17 . . . . . . 7 (𝐴 ∈ ℝ → ((𝐴 − 2) + 𝐴) = (2 · (𝐴 − 1)))
3736adantr 479 . . . . . 6 ((𝐴 ∈ ℝ ∧ 2 ≤ 𝐴) → ((𝐴 − 2) + 𝐴) = (2 · (𝐴 − 1)))
3819, 24, 373brtr3d 5179 . . . . 5 ((𝐴 ∈ ℝ ∧ 2 ≤ 𝐴) → 𝐴 ≤ (2 · (𝐴 − 1)))
3913, 38jca 510 . . . 4 ((𝐴 ∈ ℝ ∧ 2 ≤ 𝐴) → (0 ≤ 𝐴𝐴 ≤ (2 · (𝐴 − 1))))
40393adant2 1128 . . 3 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ0 ∧ 2 ≤ 𝐴) → (0 ≤ 𝐴𝐴 ≤ (2 · (𝐴 − 1))))
41 leexp1a 14172 . . 3 (((𝐴 ∈ ℝ ∧ (2 · (𝐴 − 1)) ∈ ℝ ∧ 𝑁 ∈ ℕ0) ∧ (0 ≤ 𝐴𝐴 ≤ (2 · (𝐴 − 1)))) → (𝐴𝑁) ≤ ((2 · (𝐴 − 1))↑𝑁))
421, 6, 7, 40, 41syl31anc 1370 . 2 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ0 ∧ 2 ≤ 𝐴) → (𝐴𝑁) ≤ ((2 · (𝐴 − 1))↑𝑁))
433recnd 11272 . . . 4 (𝐴 ∈ ℝ → (𝐴 − 1) ∈ ℂ)
44 mulexp 14099 . . . . 5 ((2 ∈ ℂ ∧ (𝐴 − 1) ∈ ℂ ∧ 𝑁 ∈ ℕ0) → ((2 · (𝐴 − 1))↑𝑁) = ((2↑𝑁) · ((𝐴 − 1)↑𝑁)))
4521, 44mp3an1 1444 . . . 4 (((𝐴 − 1) ∈ ℂ ∧ 𝑁 ∈ ℕ0) → ((2 · (𝐴 − 1))↑𝑁) = ((2↑𝑁) · ((𝐴 − 1)↑𝑁)))
4643, 45sylan 578 . . 3 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ0) → ((2 · (𝐴 − 1))↑𝑁) = ((2↑𝑁) · ((𝐴 − 1)↑𝑁)))
47463adant3 1129 . 2 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ0 ∧ 2 ≤ 𝐴) → ((2 · (𝐴 − 1))↑𝑁) = ((2↑𝑁) · ((𝐴 − 1)↑𝑁)))
4842, 47breqtrd 5174 1 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ0 ∧ 2 ≤ 𝐴) → (𝐴𝑁) ≤ ((2↑𝑁) · ((𝐴 − 1)↑𝑁)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394  w3a 1084   = wceq 1533  wcel 2098   class class class wbr 5148  (class class class)co 7417  cc 11136  cr 11137  0cc0 11138  1c1 11139   + caddc 11141   · cmul 11143  cle 11279  cmin 11474  2c2 12297  0cn0 12502  cexp 14059
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-sep 5299  ax-nul 5306  ax-pow 5364  ax-pr 5428  ax-un 7739  ax-cnex 11194  ax-resscn 11195  ax-1cn 11196  ax-icn 11197  ax-addcl 11198  ax-addrcl 11199  ax-mulcl 11200  ax-mulrcl 11201  ax-mulcom 11202  ax-addass 11203  ax-mulass 11204  ax-distr 11205  ax-i2m1 11206  ax-1ne0 11207  ax-1rid 11208  ax-rnegex 11209  ax-rrecex 11210  ax-cnre 11211  ax-pre-lttri 11212  ax-pre-lttrn 11213  ax-pre-ltadd 11214  ax-pre-mulgt0 11215
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-reu 3365  df-rab 3420  df-v 3465  df-sbc 3775  df-csb 3891  df-dif 3948  df-un 3950  df-in 3952  df-ss 3962  df-pss 3965  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4909  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5575  df-eprel 5581  df-po 5589  df-so 5590  df-fr 5632  df-we 5634  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-pred 6305  df-ord 6372  df-on 6373  df-lim 6374  df-suc 6375  df-iota 6499  df-fun 6549  df-fn 6550  df-f 6551  df-f1 6552  df-fo 6553  df-f1o 6554  df-fv 6555  df-riota 7373  df-ov 7420  df-oprab 7421  df-mpo 7422  df-om 7870  df-2nd 7993  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-er 8723  df-en 8963  df-dom 8964  df-sdom 8965  df-pnf 11280  df-mnf 11281  df-xr 11282  df-ltxr 11283  df-le 11284  df-sub 11476  df-neg 11477  df-nn 12243  df-2 12305  df-n0 12503  df-z 12589  df-uz 12853  df-seq 14000  df-exp 14060
This theorem is referenced by:  faclbnd4lem1  14285
  Copyright terms: Public domain W3C validator
OSZAR »