MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ficardom Structured version   Visualization version   GIF version

Theorem ficardom 9992
Description: The cardinal number of a finite set is a finite ordinal. (Contributed by Paul Chapman, 11-Apr-2009.) (Revised by Mario Carneiro, 4-Feb-2013.)
Assertion
Ref Expression
ficardom (𝐴 ∈ Fin → (card‘𝐴) ∈ ω)

Proof of Theorem ficardom
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 isfi 9003 . . 3 (𝐴 ∈ Fin ↔ ∃𝑥 ∈ ω 𝐴𝑥)
21biimpi 215 . 2 (𝐴 ∈ Fin → ∃𝑥 ∈ ω 𝐴𝑥)
3 finnum 9979 . . . . . . . 8 (𝐴 ∈ Fin → 𝐴 ∈ dom card)
4 cardid2 9984 . . . . . . . 8 (𝐴 ∈ dom card → (card‘𝐴) ≈ 𝐴)
53, 4syl 17 . . . . . . 7 (𝐴 ∈ Fin → (card‘𝐴) ≈ 𝐴)
6 entr 9033 . . . . . . 7 (((card‘𝐴) ≈ 𝐴𝐴𝑥) → (card‘𝐴) ≈ 𝑥)
75, 6sylan 578 . . . . . 6 ((𝐴 ∈ Fin ∧ 𝐴𝑥) → (card‘𝐴) ≈ 𝑥)
8 cardon 9975 . . . . . . 7 (card‘𝐴) ∈ On
9 onomeneq 9259 . . . . . . 7 (((card‘𝐴) ∈ On ∧ 𝑥 ∈ ω) → ((card‘𝐴) ≈ 𝑥 ↔ (card‘𝐴) = 𝑥))
108, 9mpan 688 . . . . . 6 (𝑥 ∈ ω → ((card‘𝐴) ≈ 𝑥 ↔ (card‘𝐴) = 𝑥))
117, 10imbitrid 243 . . . . 5 (𝑥 ∈ ω → ((𝐴 ∈ Fin ∧ 𝐴𝑥) → (card‘𝐴) = 𝑥))
12 eleq1a 2824 . . . . 5 (𝑥 ∈ ω → ((card‘𝐴) = 𝑥 → (card‘𝐴) ∈ ω))
1311, 12syld 47 . . . 4 (𝑥 ∈ ω → ((𝐴 ∈ Fin ∧ 𝐴𝑥) → (card‘𝐴) ∈ ω))
1413expcomd 415 . . 3 (𝑥 ∈ ω → (𝐴𝑥 → (𝐴 ∈ Fin → (card‘𝐴) ∈ ω)))
1514rexlimiv 3145 . 2 (∃𝑥 ∈ ω 𝐴𝑥 → (𝐴 ∈ Fin → (card‘𝐴) ∈ ω))
162, 15mpcom 38 1 (𝐴 ∈ Fin → (card‘𝐴) ∈ ω)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394   = wceq 1533  wcel 2098  wrex 3067   class class class wbr 5152  dom cdm 5682  Oncon0 6374  cfv 6553  ωcom 7876  cen 8967  Fincfn 8970  cardccrd 9966
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2699  ax-sep 5303  ax-nul 5310  ax-pow 5369  ax-pr 5433  ax-un 7746
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2529  df-eu 2558  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-ral 3059  df-rex 3068  df-reu 3375  df-rab 3431  df-v 3475  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4327  df-if 4533  df-pw 4608  df-sn 4633  df-pr 4635  df-op 4639  df-uni 4913  df-int 4954  df-br 5153  df-opab 5215  df-mpt 5236  df-tr 5270  df-id 5580  df-eprel 5586  df-po 5594  df-so 5595  df-fr 5637  df-we 5639  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-ord 6377  df-on 6378  df-lim 6379  df-suc 6380  df-iota 6505  df-fun 6555  df-fn 6556  df-f 6557  df-f1 6558  df-fo 6559  df-f1o 6560  df-fv 6561  df-om 7877  df-1o 8493  df-er 8731  df-en 8971  df-dom 8972  df-sdom 8973  df-fin 8974  df-card 9970
This theorem is referenced by:  cardnn  9994  isinffi  10023  finnisoeu  10144  iunfictbso  10145  ficardadju  10230  ficardun  10231  ficardunOLD  10232  ficardun2  10233  ficardun2OLD  10234  pwsdompw  10235  ackbij1lem5  10255  ackbij1lem9  10259  ackbij1lem10  10260  ackbij1lem14  10264  ackbij1b  10270  ackbij2lem2  10271  ackbij2  10274  fin23lem22  10358  fin1a2lem11  10441  domtriomlem  10473  pwfseqlem4a  10692  pwfseqlem4  10693  hashkf  14331  hashginv  14333  hashcard  14354  hashcl  14355  hashdom  14378  hashun  14381  ishashinf  14464  ackbijnn  15814  mreexexd  17635
  Copyright terms: Public domain W3C validator
OSZAR »