MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ficardun2OLD Structured version   Visualization version   GIF version

Theorem ficardun2OLD 10232
Description: Obsolete version of ficardun2 10231 as of 3-Jul-2024. (Contributed by Mario Carneiro, 5-Feb-2013.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
ficardun2OLD ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → (card‘(𝐴𝐵)) ⊆ ((card‘𝐴) +o (card‘𝐵)))

Proof of Theorem ficardun2OLD
StepHypRef Expression
1 undjudom 10196 . . . 4 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → (𝐴𝐵) ≼ (𝐴𝐵))
2 finnum 9977 . . . . 5 (𝐴 ∈ Fin → 𝐴 ∈ dom card)
3 finnum 9977 . . . . 5 (𝐵 ∈ Fin → 𝐵 ∈ dom card)
4 cardadju 10223 . . . . 5 ((𝐴 ∈ dom card ∧ 𝐵 ∈ dom card) → (𝐴𝐵) ≈ ((card‘𝐴) +o (card‘𝐵)))
52, 3, 4syl2an 594 . . . 4 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → (𝐴𝐵) ≈ ((card‘𝐴) +o (card‘𝐵)))
6 domentr 9038 . . . 4 (((𝐴𝐵) ≼ (𝐴𝐵) ∧ (𝐴𝐵) ≈ ((card‘𝐴) +o (card‘𝐵))) → (𝐴𝐵) ≼ ((card‘𝐴) +o (card‘𝐵)))
71, 5, 6syl2anc 582 . . 3 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → (𝐴𝐵) ≼ ((card‘𝐴) +o (card‘𝐵)))
8 unfi 9201 . . . . 5 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → (𝐴𝐵) ∈ Fin)
9 finnum 9977 . . . . 5 ((𝐴𝐵) ∈ Fin → (𝐴𝐵) ∈ dom card)
108, 9syl 17 . . . 4 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → (𝐴𝐵) ∈ dom card)
11 ficardom 9990 . . . . . 6 (𝐴 ∈ Fin → (card‘𝐴) ∈ ω)
12 ficardom 9990 . . . . . 6 (𝐵 ∈ Fin → (card‘𝐵) ∈ ω)
13 nnacl 8636 . . . . . 6 (((card‘𝐴) ∈ ω ∧ (card‘𝐵) ∈ ω) → ((card‘𝐴) +o (card‘𝐵)) ∈ ω)
1411, 12, 13syl2an 594 . . . . 5 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → ((card‘𝐴) +o (card‘𝐵)) ∈ ω)
15 nnon 7880 . . . . 5 (((card‘𝐴) +o (card‘𝐵)) ∈ ω → ((card‘𝐴) +o (card‘𝐵)) ∈ On)
16 onenon 9978 . . . . 5 (((card‘𝐴) +o (card‘𝐵)) ∈ On → ((card‘𝐴) +o (card‘𝐵)) ∈ dom card)
1714, 15, 163syl 18 . . . 4 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → ((card‘𝐴) +o (card‘𝐵)) ∈ dom card)
18 carddom2 10006 . . . 4 (((𝐴𝐵) ∈ dom card ∧ ((card‘𝐴) +o (card‘𝐵)) ∈ dom card) → ((card‘(𝐴𝐵)) ⊆ (card‘((card‘𝐴) +o (card‘𝐵))) ↔ (𝐴𝐵) ≼ ((card‘𝐴) +o (card‘𝐵))))
1910, 17, 18syl2anc 582 . . 3 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → ((card‘(𝐴𝐵)) ⊆ (card‘((card‘𝐴) +o (card‘𝐵))) ↔ (𝐴𝐵) ≼ ((card‘𝐴) +o (card‘𝐵))))
207, 19mpbird 256 . 2 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → (card‘(𝐴𝐵)) ⊆ (card‘((card‘𝐴) +o (card‘𝐵))))
21 cardnn 9992 . . 3 (((card‘𝐴) +o (card‘𝐵)) ∈ ω → (card‘((card‘𝐴) +o (card‘𝐵))) = ((card‘𝐴) +o (card‘𝐵)))
2214, 21syl 17 . 2 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → (card‘((card‘𝐴) +o (card‘𝐵))) = ((card‘𝐴) +o (card‘𝐵)))
2320, 22sseqtrd 4020 1 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → (card‘(𝐴𝐵)) ⊆ ((card‘𝐴) +o (card‘𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394   = wceq 1533  wcel 2098  cun 3945  wss 3947   class class class wbr 5150  dom cdm 5680  Oncon0 6372  cfv 6551  (class class class)co 7424  ωcom 7874   +o coa 8488  cen 8965  cdom 8966  Fincfn 8968  cdju 9927  cardccrd 9964
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2698  ax-rep 5287  ax-sep 5301  ax-nul 5308  ax-pow 5367  ax-pr 5431  ax-un 7744
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2529  df-eu 2558  df-clab 2705  df-cleq 2719  df-clel 2805  df-nfc 2880  df-ne 2937  df-ral 3058  df-rex 3067  df-rmo 3372  df-reu 3373  df-rab 3429  df-v 3473  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4325  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4911  df-int 4952  df-iun 5000  df-br 5151  df-opab 5213  df-mpt 5234  df-tr 5268  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5635  df-we 5637  df-xp 5686  df-rel 5687  df-cnv 5688  df-co 5689  df-dm 5690  df-rn 5691  df-res 5692  df-ima 5693  df-pred 6308  df-ord 6375  df-on 6376  df-lim 6377  df-suc 6378  df-iota 6503  df-fun 6553  df-fn 6554  df-f 6555  df-f1 6556  df-fo 6557  df-f1o 6558  df-fv 6559  df-ov 7427  df-oprab 7428  df-mpo 7429  df-om 7875  df-1st 7997  df-2nd 7998  df-frecs 8291  df-wrecs 8322  df-recs 8396  df-rdg 8435  df-1o 8491  df-oadd 8495  df-er 8729  df-en 8969  df-dom 8970  df-sdom 8971  df-fin 8972  df-dju 9930  df-card 9968
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator
OSZAR »