Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fourierdlem7 Structured version   Visualization version   GIF version

Theorem fourierdlem7 45502
Description: The difference between the periodic sawtooth function and the identity function is decreasing. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
fourierdlem7.a (𝜑𝐴 ∈ ℝ)
fourierdlem7.b (𝜑𝐵 ∈ ℝ)
fourierdlem7.altb (𝜑𝐴 < 𝐵)
fourierdlem7.t 𝑇 = (𝐵𝐴)
fourierdlem7.e 𝐸 = (𝑥 ∈ ℝ ↦ (𝑥 + ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇)))
fourierdlem7.x (𝜑𝑋 ∈ ℝ)
fourierdlem7.y (𝜑𝑌 ∈ ℝ)
fourierdlem7.xlty (𝜑𝑋𝑌)
Assertion
Ref Expression
fourierdlem7 (𝜑 → ((𝐸𝑌) − 𝑌) ≤ ((𝐸𝑋) − 𝑋))
Distinct variable groups:   𝑥,𝐵   𝑥,𝑇   𝑥,𝑋   𝑥,𝑌   𝜑,𝑥
Allowed substitution hints:   𝐴(𝑥)   𝐸(𝑥)

Proof of Theorem fourierdlem7
StepHypRef Expression
1 fourierdlem7.b . . . . . 6 (𝜑𝐵 ∈ ℝ)
2 fourierdlem7.y . . . . . 6 (𝜑𝑌 ∈ ℝ)
31, 2resubcld 11673 . . . . 5 (𝜑 → (𝐵𝑌) ∈ ℝ)
4 fourierdlem7.t . . . . . 6 𝑇 = (𝐵𝐴)
5 fourierdlem7.a . . . . . . 7 (𝜑𝐴 ∈ ℝ)
61, 5resubcld 11673 . . . . . 6 (𝜑 → (𝐵𝐴) ∈ ℝ)
74, 6eqeltrid 2833 . . . . 5 (𝜑𝑇 ∈ ℝ)
8 fourierdlem7.altb . . . . . . . 8 (𝜑𝐴 < 𝐵)
95, 1posdifd 11832 . . . . . . . 8 (𝜑 → (𝐴 < 𝐵 ↔ 0 < (𝐵𝐴)))
108, 9mpbid 231 . . . . . . 7 (𝜑 → 0 < (𝐵𝐴))
1110, 4breqtrrdi 5190 . . . . . 6 (𝜑 → 0 < 𝑇)
1211gt0ne0d 11809 . . . . 5 (𝜑𝑇 ≠ 0)
133, 7, 12redivcld 12073 . . . 4 (𝜑 → ((𝐵𝑌) / 𝑇) ∈ ℝ)
14 fourierdlem7.x . . . . . 6 (𝜑𝑋 ∈ ℝ)
151, 14resubcld 11673 . . . . 5 (𝜑 → (𝐵𝑋) ∈ ℝ)
1615, 7, 12redivcld 12073 . . . 4 (𝜑 → ((𝐵𝑋) / 𝑇) ∈ ℝ)
177, 11elrpd 13046 . . . . 5 (𝜑𝑇 ∈ ℝ+)
18 fourierdlem7.xlty . . . . . 6 (𝜑𝑋𝑌)
1914, 2, 1, 18lesub2dd 11862 . . . . 5 (𝜑 → (𝐵𝑌) ≤ (𝐵𝑋))
203, 15, 17, 19lediv1dd 13107 . . . 4 (𝜑 → ((𝐵𝑌) / 𝑇) ≤ ((𝐵𝑋) / 𝑇))
21 flwordi 13810 . . . 4 ((((𝐵𝑌) / 𝑇) ∈ ℝ ∧ ((𝐵𝑋) / 𝑇) ∈ ℝ ∧ ((𝐵𝑌) / 𝑇) ≤ ((𝐵𝑋) / 𝑇)) → (⌊‘((𝐵𝑌) / 𝑇)) ≤ (⌊‘((𝐵𝑋) / 𝑇)))
2213, 16, 20, 21syl3anc 1369 . . 3 (𝜑 → (⌊‘((𝐵𝑌) / 𝑇)) ≤ (⌊‘((𝐵𝑋) / 𝑇)))
2313flcld 13796 . . . . 5 (𝜑 → (⌊‘((𝐵𝑌) / 𝑇)) ∈ ℤ)
2423zred 12697 . . . 4 (𝜑 → (⌊‘((𝐵𝑌) / 𝑇)) ∈ ℝ)
2516flcld 13796 . . . . 5 (𝜑 → (⌊‘((𝐵𝑋) / 𝑇)) ∈ ℤ)
2625zred 12697 . . . 4 (𝜑 → (⌊‘((𝐵𝑋) / 𝑇)) ∈ ℝ)
2724, 26, 17lemul1d 13092 . . 3 (𝜑 → ((⌊‘((𝐵𝑌) / 𝑇)) ≤ (⌊‘((𝐵𝑋) / 𝑇)) ↔ ((⌊‘((𝐵𝑌) / 𝑇)) · 𝑇) ≤ ((⌊‘((𝐵𝑋) / 𝑇)) · 𝑇)))
2822, 27mpbid 231 . 2 (𝜑 → ((⌊‘((𝐵𝑌) / 𝑇)) · 𝑇) ≤ ((⌊‘((𝐵𝑋) / 𝑇)) · 𝑇))
29 fourierdlem7.e . . . . . 6 𝐸 = (𝑥 ∈ ℝ ↦ (𝑥 + ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇)))
3029a1i 11 . . . . 5 (𝜑𝐸 = (𝑥 ∈ ℝ ↦ (𝑥 + ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇))))
31 id 22 . . . . . . 7 (𝑥 = 𝑌𝑥 = 𝑌)
32 oveq2 7428 . . . . . . . . . 10 (𝑥 = 𝑌 → (𝐵𝑥) = (𝐵𝑌))
3332oveq1d 7435 . . . . . . . . 9 (𝑥 = 𝑌 → ((𝐵𝑥) / 𝑇) = ((𝐵𝑌) / 𝑇))
3433fveq2d 6901 . . . . . . . 8 (𝑥 = 𝑌 → (⌊‘((𝐵𝑥) / 𝑇)) = (⌊‘((𝐵𝑌) / 𝑇)))
3534oveq1d 7435 . . . . . . 7 (𝑥 = 𝑌 → ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇) = ((⌊‘((𝐵𝑌) / 𝑇)) · 𝑇))
3631, 35oveq12d 7438 . . . . . 6 (𝑥 = 𝑌 → (𝑥 + ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇)) = (𝑌 + ((⌊‘((𝐵𝑌) / 𝑇)) · 𝑇)))
3736adantl 481 . . . . 5 ((𝜑𝑥 = 𝑌) → (𝑥 + ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇)) = (𝑌 + ((⌊‘((𝐵𝑌) / 𝑇)) · 𝑇)))
3824, 7remulcld 11275 . . . . . 6 (𝜑 → ((⌊‘((𝐵𝑌) / 𝑇)) · 𝑇) ∈ ℝ)
392, 38readdcld 11274 . . . . 5 (𝜑 → (𝑌 + ((⌊‘((𝐵𝑌) / 𝑇)) · 𝑇)) ∈ ℝ)
4030, 37, 2, 39fvmptd 7012 . . . 4 (𝜑 → (𝐸𝑌) = (𝑌 + ((⌊‘((𝐵𝑌) / 𝑇)) · 𝑇)))
4140oveq1d 7435 . . 3 (𝜑 → ((𝐸𝑌) − 𝑌) = ((𝑌 + ((⌊‘((𝐵𝑌) / 𝑇)) · 𝑇)) − 𝑌))
422recnd 11273 . . . 4 (𝜑𝑌 ∈ ℂ)
4338recnd 11273 . . . 4 (𝜑 → ((⌊‘((𝐵𝑌) / 𝑇)) · 𝑇) ∈ ℂ)
4442, 43pncan2d 11604 . . 3 (𝜑 → ((𝑌 + ((⌊‘((𝐵𝑌) / 𝑇)) · 𝑇)) − 𝑌) = ((⌊‘((𝐵𝑌) / 𝑇)) · 𝑇))
4541, 44eqtrd 2768 . 2 (𝜑 → ((𝐸𝑌) − 𝑌) = ((⌊‘((𝐵𝑌) / 𝑇)) · 𝑇))
46 id 22 . . . . . . 7 (𝑥 = 𝑋𝑥 = 𝑋)
47 oveq2 7428 . . . . . . . . . 10 (𝑥 = 𝑋 → (𝐵𝑥) = (𝐵𝑋))
4847oveq1d 7435 . . . . . . . . 9 (𝑥 = 𝑋 → ((𝐵𝑥) / 𝑇) = ((𝐵𝑋) / 𝑇))
4948fveq2d 6901 . . . . . . . 8 (𝑥 = 𝑋 → (⌊‘((𝐵𝑥) / 𝑇)) = (⌊‘((𝐵𝑋) / 𝑇)))
5049oveq1d 7435 . . . . . . 7 (𝑥 = 𝑋 → ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇) = ((⌊‘((𝐵𝑋) / 𝑇)) · 𝑇))
5146, 50oveq12d 7438 . . . . . 6 (𝑥 = 𝑋 → (𝑥 + ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇)) = (𝑋 + ((⌊‘((𝐵𝑋) / 𝑇)) · 𝑇)))
5251adantl 481 . . . . 5 ((𝜑𝑥 = 𝑋) → (𝑥 + ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇)) = (𝑋 + ((⌊‘((𝐵𝑋) / 𝑇)) · 𝑇)))
5326, 7remulcld 11275 . . . . . 6 (𝜑 → ((⌊‘((𝐵𝑋) / 𝑇)) · 𝑇) ∈ ℝ)
5414, 53readdcld 11274 . . . . 5 (𝜑 → (𝑋 + ((⌊‘((𝐵𝑋) / 𝑇)) · 𝑇)) ∈ ℝ)
5530, 52, 14, 54fvmptd 7012 . . . 4 (𝜑 → (𝐸𝑋) = (𝑋 + ((⌊‘((𝐵𝑋) / 𝑇)) · 𝑇)))
5655oveq1d 7435 . . 3 (𝜑 → ((𝐸𝑋) − 𝑋) = ((𝑋 + ((⌊‘((𝐵𝑋) / 𝑇)) · 𝑇)) − 𝑋))
5714recnd 11273 . . . 4 (𝜑𝑋 ∈ ℂ)
5853recnd 11273 . . . 4 (𝜑 → ((⌊‘((𝐵𝑋) / 𝑇)) · 𝑇) ∈ ℂ)
5957, 58pncan2d 11604 . . 3 (𝜑 → ((𝑋 + ((⌊‘((𝐵𝑋) / 𝑇)) · 𝑇)) − 𝑋) = ((⌊‘((𝐵𝑋) / 𝑇)) · 𝑇))
6056, 59eqtrd 2768 . 2 (𝜑 → ((𝐸𝑋) − 𝑋) = ((⌊‘((𝐵𝑋) / 𝑇)) · 𝑇))
6128, 45, 603brtr4d 5180 1 (𝜑 → ((𝐸𝑌) − 𝑌) ≤ ((𝐸𝑋) − 𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1534  wcel 2099   class class class wbr 5148  cmpt 5231  cfv 6548  (class class class)co 7420  cr 11138  0cc0 11139   + caddc 11142   · cmul 11144   < clt 11279  cle 11280  cmin 11475   / cdiv 11902  cfl 13788
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-sep 5299  ax-nul 5306  ax-pow 5365  ax-pr 5429  ax-un 7740  ax-cnex 11195  ax-resscn 11196  ax-1cn 11197  ax-icn 11198  ax-addcl 11199  ax-addrcl 11200  ax-mulcl 11201  ax-mulrcl 11202  ax-mulcom 11203  ax-addass 11204  ax-mulass 11205  ax-distr 11206  ax-i2m1 11207  ax-1ne0 11208  ax-1rid 11209  ax-rnegex 11210  ax-rrecex 11211  ax-cnre 11212  ax-pre-lttri 11213  ax-pre-lttrn 11214  ax-pre-ltadd 11215  ax-pre-mulgt0 11216  ax-pre-sup 11217
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3373  df-reu 3374  df-rab 3430  df-v 3473  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4909  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5576  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5633  df-we 5635  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-pred 6305  df-ord 6372  df-on 6373  df-lim 6374  df-suc 6375  df-iota 6500  df-fun 6550  df-fn 6551  df-f 6552  df-f1 6553  df-fo 6554  df-f1o 6555  df-fv 6556  df-riota 7376  df-ov 7423  df-oprab 7424  df-mpo 7425  df-om 7871  df-2nd 7994  df-frecs 8287  df-wrecs 8318  df-recs 8392  df-rdg 8431  df-er 8725  df-en 8965  df-dom 8966  df-sdom 8967  df-sup 9466  df-inf 9467  df-pnf 11281  df-mnf 11282  df-xr 11283  df-ltxr 11284  df-le 11285  df-sub 11477  df-neg 11478  df-div 11903  df-nn 12244  df-n0 12504  df-z 12590  df-uz 12854  df-rp 13008  df-fl 13790
This theorem is referenced by:  fourierdlem63  45557
  Copyright terms: Public domain W3C validator
OSZAR »