MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  frgrwopreglem5a Structured version   Visualization version   GIF version

Theorem frgrwopreglem5a 30213
Description: If a friendship graph has two vertices with the same degree and two other vertices with different degrees, then there is a 4-cycle in the graph. Alternate version of frgrwopreglem5 30223 without a fixed degree and without using the sets 𝐴 and 𝐵. (Contributed by Alexander van der Vekens, 31-Dec-2017.) (Revised by AV, 4-Feb-2022.)
Hypotheses
Ref Expression
frgrncvvdeq.v 𝑉 = (Vtx‘𝐺)
frgrncvvdeq.d 𝐷 = (VtxDeg‘𝐺)
frgrwopreglem4a.e 𝐸 = (Edg‘𝐺)
Assertion
Ref Expression
frgrwopreglem5a ((𝐺 ∈ FriendGraph ∧ ((𝐴𝑉𝑋𝑉) ∧ (𝐵𝑉𝑌𝑉)) ∧ ((𝐷𝐴) = (𝐷𝑋) ∧ (𝐷𝐴) ≠ (𝐷𝐵) ∧ (𝐷𝑋) ≠ (𝐷𝑌))) → (({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝑋} ∈ 𝐸) ∧ ({𝑋, 𝑌} ∈ 𝐸 ∧ {𝑌, 𝐴} ∈ 𝐸)))

Proof of Theorem frgrwopreglem5a
StepHypRef Expression
1 id 22 . . 3 (𝐺 ∈ FriendGraph → 𝐺 ∈ FriendGraph )
2 simpl 481 . . . 4 ((𝐴𝑉𝑋𝑉) → 𝐴𝑉)
3 simpl 481 . . . 4 ((𝐵𝑉𝑌𝑉) → 𝐵𝑉)
42, 3anim12i 611 . . 3 (((𝐴𝑉𝑋𝑉) ∧ (𝐵𝑉𝑌𝑉)) → (𝐴𝑉𝐵𝑉))
5 simp2 1134 . . 3 (((𝐷𝐴) = (𝐷𝑋) ∧ (𝐷𝐴) ≠ (𝐷𝐵) ∧ (𝐷𝑋) ≠ (𝐷𝑌)) → (𝐷𝐴) ≠ (𝐷𝐵))
6 frgrncvvdeq.v . . . 4 𝑉 = (Vtx‘𝐺)
7 frgrncvvdeq.d . . . 4 𝐷 = (VtxDeg‘𝐺)
8 frgrwopreglem4a.e . . . 4 𝐸 = (Edg‘𝐺)
96, 7, 8frgrwopreglem4a 30212 . . 3 ((𝐺 ∈ FriendGraph ∧ (𝐴𝑉𝐵𝑉) ∧ (𝐷𝐴) ≠ (𝐷𝐵)) → {𝐴, 𝐵} ∈ 𝐸)
101, 4, 5, 9syl3an 1157 . 2 ((𝐺 ∈ FriendGraph ∧ ((𝐴𝑉𝑋𝑉) ∧ (𝐵𝑉𝑌𝑉)) ∧ ((𝐷𝐴) = (𝐷𝑋) ∧ (𝐷𝐴) ≠ (𝐷𝐵) ∧ (𝐷𝑋) ≠ (𝐷𝑌))) → {𝐴, 𝐵} ∈ 𝐸)
11 simpr 483 . . . 4 ((𝐴𝑉𝑋𝑉) → 𝑋𝑉)
1211, 3anim12ci 612 . . 3 (((𝐴𝑉𝑋𝑉) ∧ (𝐵𝑉𝑌𝑉)) → (𝐵𝑉𝑋𝑉))
13 pm13.18 3011 . . . . 5 (((𝐷𝐴) = (𝐷𝑋) ∧ (𝐷𝐴) ≠ (𝐷𝐵)) → (𝐷𝑋) ≠ (𝐷𝐵))
14133adant3 1129 . . . 4 (((𝐷𝐴) = (𝐷𝑋) ∧ (𝐷𝐴) ≠ (𝐷𝐵) ∧ (𝐷𝑋) ≠ (𝐷𝑌)) → (𝐷𝑋) ≠ (𝐷𝐵))
1514necomd 2985 . . 3 (((𝐷𝐴) = (𝐷𝑋) ∧ (𝐷𝐴) ≠ (𝐷𝐵) ∧ (𝐷𝑋) ≠ (𝐷𝑌)) → (𝐷𝐵) ≠ (𝐷𝑋))
166, 7, 8frgrwopreglem4a 30212 . . 3 ((𝐺 ∈ FriendGraph ∧ (𝐵𝑉𝑋𝑉) ∧ (𝐷𝐵) ≠ (𝐷𝑋)) → {𝐵, 𝑋} ∈ 𝐸)
171, 12, 15, 16syl3an 1157 . 2 ((𝐺 ∈ FriendGraph ∧ ((𝐴𝑉𝑋𝑉) ∧ (𝐵𝑉𝑌𝑉)) ∧ ((𝐷𝐴) = (𝐷𝑋) ∧ (𝐷𝐴) ≠ (𝐷𝐵) ∧ (𝐷𝑋) ≠ (𝐷𝑌))) → {𝐵, 𝑋} ∈ 𝐸)
18 simpr 483 . . . . 5 ((𝐵𝑉𝑌𝑉) → 𝑌𝑉)
1911, 18anim12i 611 . . . 4 (((𝐴𝑉𝑋𝑉) ∧ (𝐵𝑉𝑌𝑉)) → (𝑋𝑉𝑌𝑉))
20 simp3 1135 . . . 4 (((𝐷𝐴) = (𝐷𝑋) ∧ (𝐷𝐴) ≠ (𝐷𝐵) ∧ (𝐷𝑋) ≠ (𝐷𝑌)) → (𝐷𝑋) ≠ (𝐷𝑌))
216, 7, 8frgrwopreglem4a 30212 . . . 4 ((𝐺 ∈ FriendGraph ∧ (𝑋𝑉𝑌𝑉) ∧ (𝐷𝑋) ≠ (𝐷𝑌)) → {𝑋, 𝑌} ∈ 𝐸)
221, 19, 20, 21syl3an 1157 . . 3 ((𝐺 ∈ FriendGraph ∧ ((𝐴𝑉𝑋𝑉) ∧ (𝐵𝑉𝑌𝑉)) ∧ ((𝐷𝐴) = (𝐷𝑋) ∧ (𝐷𝐴) ≠ (𝐷𝐵) ∧ (𝐷𝑋) ≠ (𝐷𝑌))) → {𝑋, 𝑌} ∈ 𝐸)
232, 18anim12ci 612 . . . 4 (((𝐴𝑉𝑋𝑉) ∧ (𝐵𝑉𝑌𝑉)) → (𝑌𝑉𝐴𝑉))
24 pm13.181 3012 . . . . . 6 (((𝐷𝐴) = (𝐷𝑋) ∧ (𝐷𝑋) ≠ (𝐷𝑌)) → (𝐷𝐴) ≠ (𝐷𝑌))
25243adant2 1128 . . . . 5 (((𝐷𝐴) = (𝐷𝑋) ∧ (𝐷𝐴) ≠ (𝐷𝐵) ∧ (𝐷𝑋) ≠ (𝐷𝑌)) → (𝐷𝐴) ≠ (𝐷𝑌))
2625necomd 2985 . . . 4 (((𝐷𝐴) = (𝐷𝑋) ∧ (𝐷𝐴) ≠ (𝐷𝐵) ∧ (𝐷𝑋) ≠ (𝐷𝑌)) → (𝐷𝑌) ≠ (𝐷𝐴))
276, 7, 8frgrwopreglem4a 30212 . . . 4 ((𝐺 ∈ FriendGraph ∧ (𝑌𝑉𝐴𝑉) ∧ (𝐷𝑌) ≠ (𝐷𝐴)) → {𝑌, 𝐴} ∈ 𝐸)
281, 23, 26, 27syl3an 1157 . . 3 ((𝐺 ∈ FriendGraph ∧ ((𝐴𝑉𝑋𝑉) ∧ (𝐵𝑉𝑌𝑉)) ∧ ((𝐷𝐴) = (𝐷𝑋) ∧ (𝐷𝐴) ≠ (𝐷𝐵) ∧ (𝐷𝑋) ≠ (𝐷𝑌))) → {𝑌, 𝐴} ∈ 𝐸)
2922, 28jca 510 . 2 ((𝐺 ∈ FriendGraph ∧ ((𝐴𝑉𝑋𝑉) ∧ (𝐵𝑉𝑌𝑉)) ∧ ((𝐷𝐴) = (𝐷𝑋) ∧ (𝐷𝐴) ≠ (𝐷𝐵) ∧ (𝐷𝑋) ≠ (𝐷𝑌))) → ({𝑋, 𝑌} ∈ 𝐸 ∧ {𝑌, 𝐴} ∈ 𝐸))
3010, 17, 29jca31 513 1 ((𝐺 ∈ FriendGraph ∧ ((𝐴𝑉𝑋𝑉) ∧ (𝐵𝑉𝑌𝑉)) ∧ ((𝐷𝐴) = (𝐷𝑋) ∧ (𝐷𝐴) ≠ (𝐷𝐵) ∧ (𝐷𝑋) ≠ (𝐷𝑌))) → (({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝑋} ∈ 𝐸) ∧ ({𝑋, 𝑌} ∈ 𝐸 ∧ {𝑌, 𝐴} ∈ 𝐸)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394  w3a 1084   = wceq 1533  wcel 2098  wne 2929  {cpr 4632  cfv 6549  Vtxcvtx 28901  Edgcedg 28952  VtxDegcvtxdg 29371   FriendGraph cfrgr 30160
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5365  ax-pr 5429  ax-un 7741  ax-cnex 11201  ax-resscn 11202  ax-1cn 11203  ax-icn 11204  ax-addcl 11205  ax-addrcl 11206  ax-mulcl 11207  ax-mulrcl 11208  ax-mulcom 11209  ax-addass 11210  ax-mulass 11211  ax-distr 11212  ax-i2m1 11213  ax-1ne0 11214  ax-1rid 11215  ax-rnegex 11216  ax-rrecex 11217  ax-cnre 11218  ax-pre-lttri 11219  ax-pre-lttrn 11220  ax-pre-ltadd 11221  ax-pre-mulgt0 11222
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2930  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3419  df-v 3463  df-sbc 3774  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3964  df-nul 4323  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4910  df-int 4951  df-iun 4999  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5576  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5633  df-we 5635  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-pred 6307  df-ord 6374  df-on 6375  df-lim 6376  df-suc 6377  df-iota 6501  df-fun 6551  df-fn 6552  df-f 6553  df-f1 6554  df-fo 6555  df-f1o 6556  df-fv 6557  df-riota 7375  df-ov 7422  df-oprab 7423  df-mpo 7424  df-om 7872  df-1st 7994  df-2nd 7995  df-frecs 8287  df-wrecs 8318  df-recs 8392  df-rdg 8431  df-1o 8487  df-2o 8488  df-oadd 8491  df-er 8725  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-dju 9931  df-card 9969  df-pnf 11287  df-mnf 11288  df-xr 11289  df-ltxr 11290  df-le 11291  df-sub 11483  df-neg 11484  df-nn 12251  df-2 12313  df-n0 12511  df-xnn0 12583  df-z 12597  df-uz 12861  df-xadd 13133  df-fz 13525  df-hash 14334  df-edg 28953  df-uhgr 28963  df-ushgr 28964  df-upgr 28987  df-umgr 28988  df-uspgr 29055  df-usgr 29056  df-nbgr 29238  df-vtxdg 29372  df-frgr 30161
This theorem is referenced by:  frgrwopreglem5  30223
  Copyright terms: Public domain W3C validator
OSZAR »