![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > frgrwopreglem5a | Structured version Visualization version GIF version |
Description: If a friendship graph has two vertices with the same degree and two other vertices with different degrees, then there is a 4-cycle in the graph. Alternate version of frgrwopreglem5 30223 without a fixed degree and without using the sets 𝐴 and 𝐵. (Contributed by Alexander van der Vekens, 31-Dec-2017.) (Revised by AV, 4-Feb-2022.) |
Ref | Expression |
---|---|
frgrncvvdeq.v | ⊢ 𝑉 = (Vtx‘𝐺) |
frgrncvvdeq.d | ⊢ 𝐷 = (VtxDeg‘𝐺) |
frgrwopreglem4a.e | ⊢ 𝐸 = (Edg‘𝐺) |
Ref | Expression |
---|---|
frgrwopreglem5a | ⊢ ((𝐺 ∈ FriendGraph ∧ ((𝐴 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉) ∧ (𝐵 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉)) ∧ ((𝐷‘𝐴) = (𝐷‘𝑋) ∧ (𝐷‘𝐴) ≠ (𝐷‘𝐵) ∧ (𝐷‘𝑋) ≠ (𝐷‘𝑌))) → (({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝑋} ∈ 𝐸) ∧ ({𝑋, 𝑌} ∈ 𝐸 ∧ {𝑌, 𝐴} ∈ 𝐸))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 22 | . . 3 ⊢ (𝐺 ∈ FriendGraph → 𝐺 ∈ FriendGraph ) | |
2 | simpl 481 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉) → 𝐴 ∈ 𝑉) | |
3 | simpl 481 | . . . 4 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → 𝐵 ∈ 𝑉) | |
4 | 2, 3 | anim12i 611 | . . 3 ⊢ (((𝐴 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉) ∧ (𝐵 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉)) → (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉)) |
5 | simp2 1134 | . . 3 ⊢ (((𝐷‘𝐴) = (𝐷‘𝑋) ∧ (𝐷‘𝐴) ≠ (𝐷‘𝐵) ∧ (𝐷‘𝑋) ≠ (𝐷‘𝑌)) → (𝐷‘𝐴) ≠ (𝐷‘𝐵)) | |
6 | frgrncvvdeq.v | . . . 4 ⊢ 𝑉 = (Vtx‘𝐺) | |
7 | frgrncvvdeq.d | . . . 4 ⊢ 𝐷 = (VtxDeg‘𝐺) | |
8 | frgrwopreglem4a.e | . . . 4 ⊢ 𝐸 = (Edg‘𝐺) | |
9 | 6, 7, 8 | frgrwopreglem4a 30212 | . . 3 ⊢ ((𝐺 ∈ FriendGraph ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ (𝐷‘𝐴) ≠ (𝐷‘𝐵)) → {𝐴, 𝐵} ∈ 𝐸) |
10 | 1, 4, 5, 9 | syl3an 1157 | . 2 ⊢ ((𝐺 ∈ FriendGraph ∧ ((𝐴 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉) ∧ (𝐵 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉)) ∧ ((𝐷‘𝐴) = (𝐷‘𝑋) ∧ (𝐷‘𝐴) ≠ (𝐷‘𝐵) ∧ (𝐷‘𝑋) ≠ (𝐷‘𝑌))) → {𝐴, 𝐵} ∈ 𝐸) |
11 | simpr 483 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉) → 𝑋 ∈ 𝑉) | |
12 | 11, 3 | anim12ci 612 | . . 3 ⊢ (((𝐴 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉) ∧ (𝐵 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉)) → (𝐵 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉)) |
13 | pm13.18 3011 | . . . . 5 ⊢ (((𝐷‘𝐴) = (𝐷‘𝑋) ∧ (𝐷‘𝐴) ≠ (𝐷‘𝐵)) → (𝐷‘𝑋) ≠ (𝐷‘𝐵)) | |
14 | 13 | 3adant3 1129 | . . . 4 ⊢ (((𝐷‘𝐴) = (𝐷‘𝑋) ∧ (𝐷‘𝐴) ≠ (𝐷‘𝐵) ∧ (𝐷‘𝑋) ≠ (𝐷‘𝑌)) → (𝐷‘𝑋) ≠ (𝐷‘𝐵)) |
15 | 14 | necomd 2985 | . . 3 ⊢ (((𝐷‘𝐴) = (𝐷‘𝑋) ∧ (𝐷‘𝐴) ≠ (𝐷‘𝐵) ∧ (𝐷‘𝑋) ≠ (𝐷‘𝑌)) → (𝐷‘𝐵) ≠ (𝐷‘𝑋)) |
16 | 6, 7, 8 | frgrwopreglem4a 30212 | . . 3 ⊢ ((𝐺 ∈ FriendGraph ∧ (𝐵 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉) ∧ (𝐷‘𝐵) ≠ (𝐷‘𝑋)) → {𝐵, 𝑋} ∈ 𝐸) |
17 | 1, 12, 15, 16 | syl3an 1157 | . 2 ⊢ ((𝐺 ∈ FriendGraph ∧ ((𝐴 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉) ∧ (𝐵 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉)) ∧ ((𝐷‘𝐴) = (𝐷‘𝑋) ∧ (𝐷‘𝐴) ≠ (𝐷‘𝐵) ∧ (𝐷‘𝑋) ≠ (𝐷‘𝑌))) → {𝐵, 𝑋} ∈ 𝐸) |
18 | simpr 483 | . . . . 5 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → 𝑌 ∈ 𝑉) | |
19 | 11, 18 | anim12i 611 | . . . 4 ⊢ (((𝐴 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉) ∧ (𝐵 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉)) → (𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉)) |
20 | simp3 1135 | . . . 4 ⊢ (((𝐷‘𝐴) = (𝐷‘𝑋) ∧ (𝐷‘𝐴) ≠ (𝐷‘𝐵) ∧ (𝐷‘𝑋) ≠ (𝐷‘𝑌)) → (𝐷‘𝑋) ≠ (𝐷‘𝑌)) | |
21 | 6, 7, 8 | frgrwopreglem4a 30212 | . . . 4 ⊢ ((𝐺 ∈ FriendGraph ∧ (𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) ∧ (𝐷‘𝑋) ≠ (𝐷‘𝑌)) → {𝑋, 𝑌} ∈ 𝐸) |
22 | 1, 19, 20, 21 | syl3an 1157 | . . 3 ⊢ ((𝐺 ∈ FriendGraph ∧ ((𝐴 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉) ∧ (𝐵 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉)) ∧ ((𝐷‘𝐴) = (𝐷‘𝑋) ∧ (𝐷‘𝐴) ≠ (𝐷‘𝐵) ∧ (𝐷‘𝑋) ≠ (𝐷‘𝑌))) → {𝑋, 𝑌} ∈ 𝐸) |
23 | 2, 18 | anim12ci 612 | . . . 4 ⊢ (((𝐴 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉) ∧ (𝐵 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉)) → (𝑌 ∈ 𝑉 ∧ 𝐴 ∈ 𝑉)) |
24 | pm13.181 3012 | . . . . . 6 ⊢ (((𝐷‘𝐴) = (𝐷‘𝑋) ∧ (𝐷‘𝑋) ≠ (𝐷‘𝑌)) → (𝐷‘𝐴) ≠ (𝐷‘𝑌)) | |
25 | 24 | 3adant2 1128 | . . . . 5 ⊢ (((𝐷‘𝐴) = (𝐷‘𝑋) ∧ (𝐷‘𝐴) ≠ (𝐷‘𝐵) ∧ (𝐷‘𝑋) ≠ (𝐷‘𝑌)) → (𝐷‘𝐴) ≠ (𝐷‘𝑌)) |
26 | 25 | necomd 2985 | . . . 4 ⊢ (((𝐷‘𝐴) = (𝐷‘𝑋) ∧ (𝐷‘𝐴) ≠ (𝐷‘𝐵) ∧ (𝐷‘𝑋) ≠ (𝐷‘𝑌)) → (𝐷‘𝑌) ≠ (𝐷‘𝐴)) |
27 | 6, 7, 8 | frgrwopreglem4a 30212 | . . . 4 ⊢ ((𝐺 ∈ FriendGraph ∧ (𝑌 ∈ 𝑉 ∧ 𝐴 ∈ 𝑉) ∧ (𝐷‘𝑌) ≠ (𝐷‘𝐴)) → {𝑌, 𝐴} ∈ 𝐸) |
28 | 1, 23, 26, 27 | syl3an 1157 | . . 3 ⊢ ((𝐺 ∈ FriendGraph ∧ ((𝐴 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉) ∧ (𝐵 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉)) ∧ ((𝐷‘𝐴) = (𝐷‘𝑋) ∧ (𝐷‘𝐴) ≠ (𝐷‘𝐵) ∧ (𝐷‘𝑋) ≠ (𝐷‘𝑌))) → {𝑌, 𝐴} ∈ 𝐸) |
29 | 22, 28 | jca 510 | . 2 ⊢ ((𝐺 ∈ FriendGraph ∧ ((𝐴 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉) ∧ (𝐵 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉)) ∧ ((𝐷‘𝐴) = (𝐷‘𝑋) ∧ (𝐷‘𝐴) ≠ (𝐷‘𝐵) ∧ (𝐷‘𝑋) ≠ (𝐷‘𝑌))) → ({𝑋, 𝑌} ∈ 𝐸 ∧ {𝑌, 𝐴} ∈ 𝐸)) |
30 | 10, 17, 29 | jca31 513 | 1 ⊢ ((𝐺 ∈ FriendGraph ∧ ((𝐴 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉) ∧ (𝐵 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉)) ∧ ((𝐷‘𝐴) = (𝐷‘𝑋) ∧ (𝐷‘𝐴) ≠ (𝐷‘𝐵) ∧ (𝐷‘𝑋) ≠ (𝐷‘𝑌))) → (({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝑋} ∈ 𝐸) ∧ ({𝑋, 𝑌} ∈ 𝐸 ∧ {𝑌, 𝐴} ∈ 𝐸))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 ∧ w3a 1084 = wceq 1533 ∈ wcel 2098 ≠ wne 2929 {cpr 4632 ‘cfv 6549 Vtxcvtx 28901 Edgcedg 28952 VtxDegcvtxdg 29371 FriendGraph cfrgr 30160 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5365 ax-pr 5429 ax-un 7741 ax-cnex 11201 ax-resscn 11202 ax-1cn 11203 ax-icn 11204 ax-addcl 11205 ax-addrcl 11206 ax-mulcl 11207 ax-mulrcl 11208 ax-mulcom 11209 ax-addass 11210 ax-mulass 11211 ax-distr 11212 ax-i2m1 11213 ax-1ne0 11214 ax-1rid 11215 ax-rnegex 11216 ax-rrecex 11217 ax-cnre 11218 ax-pre-lttri 11219 ax-pre-lttrn 11220 ax-pre-ltadd 11221 ax-pre-mulgt0 11222 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2930 df-nel 3036 df-ral 3051 df-rex 3060 df-rmo 3363 df-reu 3364 df-rab 3419 df-v 3463 df-sbc 3774 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3964 df-nul 4323 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4910 df-int 4951 df-iun 4999 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5576 df-eprel 5582 df-po 5590 df-so 5591 df-fr 5633 df-we 5635 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-pred 6307 df-ord 6374 df-on 6375 df-lim 6376 df-suc 6377 df-iota 6501 df-fun 6551 df-fn 6552 df-f 6553 df-f1 6554 df-fo 6555 df-f1o 6556 df-fv 6557 df-riota 7375 df-ov 7422 df-oprab 7423 df-mpo 7424 df-om 7872 df-1st 7994 df-2nd 7995 df-frecs 8287 df-wrecs 8318 df-recs 8392 df-rdg 8431 df-1o 8487 df-2o 8488 df-oadd 8491 df-er 8725 df-en 8965 df-dom 8966 df-sdom 8967 df-fin 8968 df-dju 9931 df-card 9969 df-pnf 11287 df-mnf 11288 df-xr 11289 df-ltxr 11290 df-le 11291 df-sub 11483 df-neg 11484 df-nn 12251 df-2 12313 df-n0 12511 df-xnn0 12583 df-z 12597 df-uz 12861 df-xadd 13133 df-fz 13525 df-hash 14334 df-edg 28953 df-uhgr 28963 df-ushgr 28964 df-upgr 28987 df-umgr 28988 df-uspgr 29055 df-usgr 29056 df-nbgr 29238 df-vtxdg 29372 df-frgr 30161 |
This theorem is referenced by: frgrwopreglem5 30223 |
Copyright terms: Public domain | W3C validator |