![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > frmdsssubm | Structured version Visualization version GIF version |
Description: The set of words taking values in a subset is a (free) submonoid of the free monoid. (Contributed by Mario Carneiro, 27-Sep-2015.) (Revised by Mario Carneiro, 27-Feb-2016.) |
Ref | Expression |
---|---|
frmdmnd.m | ⊢ 𝑀 = (freeMnd‘𝐼) |
Ref | Expression |
---|---|
frmdsssubm | ⊢ ((𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼) → Word 𝐽 ∈ (SubMnd‘𝑀)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sswrd 14508 | . . . 4 ⊢ (𝐽 ⊆ 𝐼 → Word 𝐽 ⊆ Word 𝐼) | |
2 | 1 | adantl 480 | . . 3 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼) → Word 𝐽 ⊆ Word 𝐼) |
3 | frmdmnd.m | . . . . 5 ⊢ 𝑀 = (freeMnd‘𝐼) | |
4 | eqid 2725 | . . . . 5 ⊢ (Base‘𝑀) = (Base‘𝑀) | |
5 | 3, 4 | frmdbas 18812 | . . . 4 ⊢ (𝐼 ∈ 𝑉 → (Base‘𝑀) = Word 𝐼) |
6 | 5 | adantr 479 | . . 3 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼) → (Base‘𝑀) = Word 𝐼) |
7 | 2, 6 | sseqtrrd 4018 | . 2 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼) → Word 𝐽 ⊆ (Base‘𝑀)) |
8 | wrd0 14525 | . . 3 ⊢ ∅ ∈ Word 𝐽 | |
9 | 8 | a1i 11 | . 2 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼) → ∅ ∈ Word 𝐽) |
10 | 7 | sselda 3976 | . . . . . 6 ⊢ (((𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼) ∧ 𝑥 ∈ Word 𝐽) → 𝑥 ∈ (Base‘𝑀)) |
11 | 7 | sselda 3976 | . . . . . 6 ⊢ (((𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼) ∧ 𝑦 ∈ Word 𝐽) → 𝑦 ∈ (Base‘𝑀)) |
12 | 10, 11 | anim12dan 617 | . . . . 5 ⊢ (((𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼) ∧ (𝑥 ∈ Word 𝐽 ∧ 𝑦 ∈ Word 𝐽)) → (𝑥 ∈ (Base‘𝑀) ∧ 𝑦 ∈ (Base‘𝑀))) |
13 | eqid 2725 | . . . . . 6 ⊢ (+g‘𝑀) = (+g‘𝑀) | |
14 | 3, 4, 13 | frmdadd 18815 | . . . . 5 ⊢ ((𝑥 ∈ (Base‘𝑀) ∧ 𝑦 ∈ (Base‘𝑀)) → (𝑥(+g‘𝑀)𝑦) = (𝑥 ++ 𝑦)) |
15 | 12, 14 | syl 17 | . . . 4 ⊢ (((𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼) ∧ (𝑥 ∈ Word 𝐽 ∧ 𝑦 ∈ Word 𝐽)) → (𝑥(+g‘𝑀)𝑦) = (𝑥 ++ 𝑦)) |
16 | ccatcl 14560 | . . . . 5 ⊢ ((𝑥 ∈ Word 𝐽 ∧ 𝑦 ∈ Word 𝐽) → (𝑥 ++ 𝑦) ∈ Word 𝐽) | |
17 | 16 | adantl 480 | . . . 4 ⊢ (((𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼) ∧ (𝑥 ∈ Word 𝐽 ∧ 𝑦 ∈ Word 𝐽)) → (𝑥 ++ 𝑦) ∈ Word 𝐽) |
18 | 15, 17 | eqeltrd 2825 | . . 3 ⊢ (((𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼) ∧ (𝑥 ∈ Word 𝐽 ∧ 𝑦 ∈ Word 𝐽)) → (𝑥(+g‘𝑀)𝑦) ∈ Word 𝐽) |
19 | 18 | ralrimivva 3190 | . 2 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼) → ∀𝑥 ∈ Word 𝐽∀𝑦 ∈ Word 𝐽(𝑥(+g‘𝑀)𝑦) ∈ Word 𝐽) |
20 | 3 | frmdmnd 18819 | . . . 4 ⊢ (𝐼 ∈ 𝑉 → 𝑀 ∈ Mnd) |
21 | 20 | adantr 479 | . . 3 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼) → 𝑀 ∈ Mnd) |
22 | 3 | frmd0 18820 | . . . 4 ⊢ ∅ = (0g‘𝑀) |
23 | 4, 22, 13 | issubm 18763 | . . 3 ⊢ (𝑀 ∈ Mnd → (Word 𝐽 ∈ (SubMnd‘𝑀) ↔ (Word 𝐽 ⊆ (Base‘𝑀) ∧ ∅ ∈ Word 𝐽 ∧ ∀𝑥 ∈ Word 𝐽∀𝑦 ∈ Word 𝐽(𝑥(+g‘𝑀)𝑦) ∈ Word 𝐽))) |
24 | 21, 23 | syl 17 | . 2 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼) → (Word 𝐽 ∈ (SubMnd‘𝑀) ↔ (Word 𝐽 ⊆ (Base‘𝑀) ∧ ∅ ∈ Word 𝐽 ∧ ∀𝑥 ∈ Word 𝐽∀𝑦 ∈ Word 𝐽(𝑥(+g‘𝑀)𝑦) ∈ Word 𝐽))) |
25 | 7, 9, 19, 24 | mpbir3and 1339 | 1 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼) → Word 𝐽 ∈ (SubMnd‘𝑀)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 394 ∧ w3a 1084 = wceq 1533 ∈ wcel 2098 ∀wral 3050 ⊆ wss 3944 ∅c0 4322 ‘cfv 6549 (class class class)co 7419 Word cword 14500 ++ cconcat 14556 Basecbs 17183 +gcplusg 17236 Mndcmnd 18697 SubMndcsubmnd 18742 freeMndcfrmd 18807 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5365 ax-pr 5429 ax-un 7741 ax-cnex 11196 ax-resscn 11197 ax-1cn 11198 ax-icn 11199 ax-addcl 11200 ax-addrcl 11201 ax-mulcl 11202 ax-mulrcl 11203 ax-mulcom 11204 ax-addass 11205 ax-mulass 11206 ax-distr 11207 ax-i2m1 11208 ax-1ne0 11209 ax-1rid 11210 ax-rnegex 11211 ax-rrecex 11212 ax-cnre 11213 ax-pre-lttri 11214 ax-pre-lttrn 11215 ax-pre-ltadd 11216 ax-pre-mulgt0 11217 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2930 df-nel 3036 df-ral 3051 df-rex 3060 df-rmo 3363 df-reu 3364 df-rab 3419 df-v 3463 df-sbc 3774 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3964 df-nul 4323 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4910 df-int 4951 df-iun 4999 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5576 df-eprel 5582 df-po 5590 df-so 5591 df-fr 5633 df-we 5635 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-pred 6307 df-ord 6374 df-on 6375 df-lim 6376 df-suc 6377 df-iota 6501 df-fun 6551 df-fn 6552 df-f 6553 df-f1 6554 df-fo 6555 df-f1o 6556 df-fv 6557 df-riota 7375 df-ov 7422 df-oprab 7423 df-mpo 7424 df-om 7872 df-1st 7994 df-2nd 7995 df-frecs 8287 df-wrecs 8318 df-recs 8392 df-rdg 8431 df-1o 8487 df-er 8725 df-map 8847 df-en 8965 df-dom 8966 df-sdom 8967 df-fin 8968 df-card 9964 df-pnf 11282 df-mnf 11283 df-xr 11284 df-ltxr 11285 df-le 11286 df-sub 11478 df-neg 11479 df-nn 12246 df-2 12308 df-n0 12506 df-z 12592 df-uz 12856 df-fz 13520 df-fzo 13663 df-hash 14326 df-word 14501 df-concat 14557 df-struct 17119 df-slot 17154 df-ndx 17166 df-base 17184 df-plusg 17249 df-0g 17426 df-mgm 18603 df-sgrp 18682 df-mnd 18698 df-submnd 18744 df-frmd 18809 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |