MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  frmdval Structured version   Visualization version   GIF version

Theorem frmdval 18803
Description: Value of the free monoid construction. (Contributed by Mario Carneiro, 27-Sep-2015.)
Hypotheses
Ref Expression
frmdval.m 𝑀 = (freeMnd‘𝐼)
frmdval.b (𝐼𝑉𝐵 = Word 𝐼)
frmdval.p + = ( ++ ↾ (𝐵 × 𝐵))
Assertion
Ref Expression
frmdval (𝐼𝑉𝑀 = {⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩})

Proof of Theorem frmdval
Dummy variable 𝑖 is distinct from all other variables.
StepHypRef Expression
1 frmdval.m . 2 𝑀 = (freeMnd‘𝐼)
2 df-frmd 18801 . . 3 freeMnd = (𝑖 ∈ V ↦ {⟨(Base‘ndx), Word 𝑖⟩, ⟨(+g‘ndx), ( ++ ↾ (Word 𝑖 × Word 𝑖))⟩})
3 wrdeq 14519 . . . . . 6 (𝑖 = 𝐼 → Word 𝑖 = Word 𝐼)
4 frmdval.b . . . . . . 7 (𝐼𝑉𝐵 = Word 𝐼)
54eqcomd 2734 . . . . . 6 (𝐼𝑉 → Word 𝐼 = 𝐵)
63, 5sylan9eqr 2790 . . . . 5 ((𝐼𝑉𝑖 = 𝐼) → Word 𝑖 = 𝐵)
76opeq2d 4881 . . . 4 ((𝐼𝑉𝑖 = 𝐼) → ⟨(Base‘ndx), Word 𝑖⟩ = ⟨(Base‘ndx), 𝐵⟩)
86sqxpeqd 5710 . . . . . . 7 ((𝐼𝑉𝑖 = 𝐼) → (Word 𝑖 × Word 𝑖) = (𝐵 × 𝐵))
98reseq2d 5985 . . . . . 6 ((𝐼𝑉𝑖 = 𝐼) → ( ++ ↾ (Word 𝑖 × Word 𝑖)) = ( ++ ↾ (𝐵 × 𝐵)))
10 frmdval.p . . . . . 6 + = ( ++ ↾ (𝐵 × 𝐵))
119, 10eqtr4di 2786 . . . . 5 ((𝐼𝑉𝑖 = 𝐼) → ( ++ ↾ (Word 𝑖 × Word 𝑖)) = + )
1211opeq2d 4881 . . . 4 ((𝐼𝑉𝑖 = 𝐼) → ⟨(+g‘ndx), ( ++ ↾ (Word 𝑖 × Word 𝑖))⟩ = ⟨(+g‘ndx), + ⟩)
137, 12preq12d 4746 . . 3 ((𝐼𝑉𝑖 = 𝐼) → {⟨(Base‘ndx), Word 𝑖⟩, ⟨(+g‘ndx), ( ++ ↾ (Word 𝑖 × Word 𝑖))⟩} = {⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩})
14 elex 3490 . . 3 (𝐼𝑉𝐼 ∈ V)
15 prex 5434 . . . 4 {⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩} ∈ V
1615a1i 11 . . 3 (𝐼𝑉 → {⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩} ∈ V)
172, 13, 14, 16fvmptd2 7013 . 2 (𝐼𝑉 → (freeMnd‘𝐼) = {⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩})
181, 17eqtrid 2780 1 (𝐼𝑉𝑀 = {⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1534  wcel 2099  Vcvv 3471  {cpr 4631  cop 4635   × cxp 5676  cres 5680  cfv 6548  Word cword 14497   ++ cconcat 14553  ndxcnx 17162  Basecbs 17180  +gcplusg 17233  freeMndcfrmd 18799
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5365  ax-pr 5429  ax-un 7740  ax-cnex 11195  ax-resscn 11196  ax-1cn 11197  ax-icn 11198  ax-addcl 11199  ax-addrcl 11200  ax-mulcl 11201  ax-mulrcl 11202  ax-mulcom 11203  ax-addass 11204  ax-mulass 11205  ax-distr 11206  ax-i2m1 11207  ax-1ne0 11208  ax-1rid 11209  ax-rnegex 11210  ax-rrecex 11211  ax-cnre 11212  ax-pre-lttri 11213  ax-pre-lttrn 11214  ax-pre-ltadd 11215  ax-pre-mulgt0 11216
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-reu 3374  df-rab 3430  df-v 3473  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4909  df-int 4950  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5576  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5633  df-we 5635  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-pred 6305  df-ord 6372  df-on 6373  df-lim 6374  df-suc 6375  df-iota 6500  df-fun 6550  df-fn 6551  df-f 6552  df-f1 6553  df-fo 6554  df-f1o 6555  df-fv 6556  df-riota 7376  df-ov 7423  df-oprab 7424  df-mpo 7425  df-om 7871  df-1st 7993  df-2nd 7994  df-frecs 8287  df-wrecs 8318  df-recs 8392  df-rdg 8431  df-1o 8487  df-er 8725  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-card 9963  df-pnf 11281  df-mnf 11282  df-xr 11283  df-ltxr 11284  df-le 11285  df-sub 11477  df-neg 11478  df-nn 12244  df-n0 12504  df-z 12590  df-uz 12854  df-fz 13518  df-fzo 13661  df-hash 14323  df-word 14498  df-frmd 18801
This theorem is referenced by:  frmdbas  18804  frmdplusg  18806
  Copyright terms: Public domain W3C validator
OSZAR »