![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ftc1lem2 | Structured version Visualization version GIF version |
Description: Lemma for ftc1 25970. (Contributed by Mario Carneiro, 12-Aug-2014.) |
Ref | Expression |
---|---|
ftc1.g | ⊢ 𝐺 = (𝑥 ∈ (𝐴[,]𝐵) ↦ ∫(𝐴(,)𝑥)(𝐹‘𝑡) d𝑡) |
ftc1.a | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
ftc1.b | ⊢ (𝜑 → 𝐵 ∈ ℝ) |
ftc1.le | ⊢ (𝜑 → 𝐴 ≤ 𝐵) |
ftc1.s | ⊢ (𝜑 → (𝐴(,)𝐵) ⊆ 𝐷) |
ftc1.d | ⊢ (𝜑 → 𝐷 ⊆ ℝ) |
ftc1.i | ⊢ (𝜑 → 𝐹 ∈ 𝐿1) |
ftc1a.f | ⊢ (𝜑 → 𝐹:𝐷⟶ℂ) |
Ref | Expression |
---|---|
ftc1lem2 | ⊢ (𝜑 → 𝐺:(𝐴[,]𝐵)⟶ℂ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fvexd 6906 | . . 3 ⊢ (((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) ∧ 𝑡 ∈ (𝐴(,)𝑥)) → (𝐹‘𝑡) ∈ V) | |
2 | ftc1.b | . . . . . . . 8 ⊢ (𝜑 → 𝐵 ∈ ℝ) | |
3 | 2 | adantr 480 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) → 𝐵 ∈ ℝ) |
4 | 3 | rexrd 11288 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) → 𝐵 ∈ ℝ*) |
5 | ftc1.a | . . . . . . . . 9 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
6 | elicc2 13415 | . . . . . . . . 9 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝑥 ∈ (𝐴[,]𝐵) ↔ (𝑥 ∈ ℝ ∧ 𝐴 ≤ 𝑥 ∧ 𝑥 ≤ 𝐵))) | |
7 | 5, 2, 6 | syl2anc 583 | . . . . . . . 8 ⊢ (𝜑 → (𝑥 ∈ (𝐴[,]𝐵) ↔ (𝑥 ∈ ℝ ∧ 𝐴 ≤ 𝑥 ∧ 𝑥 ≤ 𝐵))) |
8 | 7 | biimpa 476 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) → (𝑥 ∈ ℝ ∧ 𝐴 ≤ 𝑥 ∧ 𝑥 ≤ 𝐵)) |
9 | 8 | simp3d 1142 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) → 𝑥 ≤ 𝐵) |
10 | iooss2 13386 | . . . . . 6 ⊢ ((𝐵 ∈ ℝ* ∧ 𝑥 ≤ 𝐵) → (𝐴(,)𝑥) ⊆ (𝐴(,)𝐵)) | |
11 | 4, 9, 10 | syl2anc 583 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) → (𝐴(,)𝑥) ⊆ (𝐴(,)𝐵)) |
12 | ftc1.s | . . . . . 6 ⊢ (𝜑 → (𝐴(,)𝐵) ⊆ 𝐷) | |
13 | 12 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) → (𝐴(,)𝐵) ⊆ 𝐷) |
14 | 11, 13 | sstrd 3988 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) → (𝐴(,)𝑥) ⊆ 𝐷) |
15 | ioombl 25487 | . . . . 5 ⊢ (𝐴(,)𝑥) ∈ dom vol | |
16 | 15 | a1i 11 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) → (𝐴(,)𝑥) ∈ dom vol) |
17 | fvexd 6906 | . . . 4 ⊢ (((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) ∧ 𝑡 ∈ 𝐷) → (𝐹‘𝑡) ∈ V) | |
18 | ftc1a.f | . . . . . . 7 ⊢ (𝜑 → 𝐹:𝐷⟶ℂ) | |
19 | 18 | feqmptd 6961 | . . . . . 6 ⊢ (𝜑 → 𝐹 = (𝑡 ∈ 𝐷 ↦ (𝐹‘𝑡))) |
20 | ftc1.i | . . . . . 6 ⊢ (𝜑 → 𝐹 ∈ 𝐿1) | |
21 | 19, 20 | eqeltrrd 2830 | . . . . 5 ⊢ (𝜑 → (𝑡 ∈ 𝐷 ↦ (𝐹‘𝑡)) ∈ 𝐿1) |
22 | 21 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) → (𝑡 ∈ 𝐷 ↦ (𝐹‘𝑡)) ∈ 𝐿1) |
23 | 14, 16, 17, 22 | iblss 25727 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) → (𝑡 ∈ (𝐴(,)𝑥) ↦ (𝐹‘𝑡)) ∈ 𝐿1) |
24 | 1, 23 | itgcl 25706 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) → ∫(𝐴(,)𝑥)(𝐹‘𝑡) d𝑡 ∈ ℂ) |
25 | ftc1.g | . 2 ⊢ 𝐺 = (𝑥 ∈ (𝐴[,]𝐵) ↦ ∫(𝐴(,)𝑥)(𝐹‘𝑡) d𝑡) | |
26 | 24, 25 | fmptd 7118 | 1 ⊢ (𝜑 → 𝐺:(𝐴[,]𝐵)⟶ℂ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∧ w3a 1085 = wceq 1534 ∈ wcel 2099 Vcvv 3470 ⊆ wss 3945 class class class wbr 5142 ↦ cmpt 5225 dom cdm 5672 ⟶wf 6538 ‘cfv 6542 (class class class)co 7414 ℂcc 11130 ℝcr 11131 ℝ*cxr 11271 ≤ cle 11273 (,)cioo 13350 [,]cicc 13353 volcvol 25385 𝐿1cibl 25539 ∫citg 25540 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-rep 5279 ax-sep 5293 ax-nul 5300 ax-pow 5359 ax-pr 5423 ax-un 7734 ax-inf2 9658 ax-cnex 11188 ax-resscn 11189 ax-1cn 11190 ax-icn 11191 ax-addcl 11192 ax-addrcl 11193 ax-mulcl 11194 ax-mulrcl 11195 ax-mulcom 11196 ax-addass 11197 ax-mulass 11198 ax-distr 11199 ax-i2m1 11200 ax-1ne0 11201 ax-1rid 11202 ax-rnegex 11203 ax-rrecex 11204 ax-cnre 11205 ax-pre-lttri 11206 ax-pre-lttrn 11207 ax-pre-ltadd 11208 ax-pre-mulgt0 11209 ax-pre-sup 11210 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2937 df-nel 3043 df-ral 3058 df-rex 3067 df-rmo 3372 df-reu 3373 df-rab 3429 df-v 3472 df-sbc 3776 df-csb 3891 df-dif 3948 df-un 3950 df-in 3952 df-ss 3962 df-pss 3964 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-int 4945 df-iun 4993 df-br 5143 df-opab 5205 df-mpt 5226 df-tr 5260 df-id 5570 df-eprel 5576 df-po 5584 df-so 5585 df-fr 5627 df-se 5628 df-we 5629 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-pred 6299 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-isom 6551 df-riota 7370 df-ov 7417 df-oprab 7418 df-mpo 7419 df-of 7679 df-ofr 7680 df-om 7865 df-1st 7987 df-2nd 7988 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-1o 8480 df-2o 8481 df-er 8718 df-map 8840 df-pm 8841 df-en 8958 df-dom 8959 df-sdom 8960 df-fin 8961 df-sup 9459 df-inf 9460 df-oi 9527 df-dju 9918 df-card 9956 df-pnf 11274 df-mnf 11275 df-xr 11276 df-ltxr 11277 df-le 11278 df-sub 11470 df-neg 11471 df-div 11896 df-nn 12237 df-2 12299 df-3 12300 df-4 12301 df-n0 12497 df-z 12583 df-uz 12847 df-q 12957 df-rp 13001 df-xadd 13119 df-ioo 13354 df-ico 13356 df-icc 13357 df-fz 13511 df-fzo 13654 df-fl 13783 df-mod 13861 df-seq 13993 df-exp 14053 df-hash 14316 df-cj 15072 df-re 15073 df-im 15074 df-sqrt 15208 df-abs 15209 df-clim 15458 df-rlim 15459 df-sum 15659 df-xmet 21265 df-met 21266 df-ovol 25386 df-vol 25387 df-mbf 25541 df-itg1 25542 df-itg2 25543 df-ibl 25544 df-itg 25545 |
This theorem is referenced by: ftc1a 25965 ftc1lem5 25968 ftc1lem6 25969 ftc1 25970 ftc1cn 25971 ftc1cnnc 37159 ftc1anc 37168 |
Copyright terms: Public domain | W3C validator |