MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ftc1lem2 Structured version   Visualization version   GIF version

Theorem ftc1lem2 25964
Description: Lemma for ftc1 25970. (Contributed by Mario Carneiro, 12-Aug-2014.)
Hypotheses
Ref Expression
ftc1.g 𝐺 = (𝑥 ∈ (𝐴[,]𝐵) ↦ ∫(𝐴(,)𝑥)(𝐹𝑡) d𝑡)
ftc1.a (𝜑𝐴 ∈ ℝ)
ftc1.b (𝜑𝐵 ∈ ℝ)
ftc1.le (𝜑𝐴𝐵)
ftc1.s (𝜑 → (𝐴(,)𝐵) ⊆ 𝐷)
ftc1.d (𝜑𝐷 ⊆ ℝ)
ftc1.i (𝜑𝐹 ∈ 𝐿1)
ftc1a.f (𝜑𝐹:𝐷⟶ℂ)
Assertion
Ref Expression
ftc1lem2 (𝜑𝐺:(𝐴[,]𝐵)⟶ℂ)
Distinct variable groups:   𝑥,𝑡,𝐷   𝑡,𝐴,𝑥   𝑡,𝐵,𝑥   𝜑,𝑡,𝑥   𝑡,𝐹,𝑥
Allowed substitution hints:   𝐺(𝑥,𝑡)

Proof of Theorem ftc1lem2
StepHypRef Expression
1 fvexd 6906 . . 3 (((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ 𝑡 ∈ (𝐴(,)𝑥)) → (𝐹𝑡) ∈ V)
2 ftc1.b . . . . . . . 8 (𝜑𝐵 ∈ ℝ)
32adantr 480 . . . . . . 7 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → 𝐵 ∈ ℝ)
43rexrd 11288 . . . . . 6 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → 𝐵 ∈ ℝ*)
5 ftc1.a . . . . . . . . 9 (𝜑𝐴 ∈ ℝ)
6 elicc2 13415 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝑥 ∈ (𝐴[,]𝐵) ↔ (𝑥 ∈ ℝ ∧ 𝐴𝑥𝑥𝐵)))
75, 2, 6syl2anc 583 . . . . . . . 8 (𝜑 → (𝑥 ∈ (𝐴[,]𝐵) ↔ (𝑥 ∈ ℝ ∧ 𝐴𝑥𝑥𝐵)))
87biimpa 476 . . . . . . 7 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → (𝑥 ∈ ℝ ∧ 𝐴𝑥𝑥𝐵))
98simp3d 1142 . . . . . 6 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → 𝑥𝐵)
10 iooss2 13386 . . . . . 6 ((𝐵 ∈ ℝ*𝑥𝐵) → (𝐴(,)𝑥) ⊆ (𝐴(,)𝐵))
114, 9, 10syl2anc 583 . . . . 5 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → (𝐴(,)𝑥) ⊆ (𝐴(,)𝐵))
12 ftc1.s . . . . . 6 (𝜑 → (𝐴(,)𝐵) ⊆ 𝐷)
1312adantr 480 . . . . 5 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → (𝐴(,)𝐵) ⊆ 𝐷)
1411, 13sstrd 3988 . . . 4 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → (𝐴(,)𝑥) ⊆ 𝐷)
15 ioombl 25487 . . . . 5 (𝐴(,)𝑥) ∈ dom vol
1615a1i 11 . . . 4 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → (𝐴(,)𝑥) ∈ dom vol)
17 fvexd 6906 . . . 4 (((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ 𝑡𝐷) → (𝐹𝑡) ∈ V)
18 ftc1a.f . . . . . . 7 (𝜑𝐹:𝐷⟶ℂ)
1918feqmptd 6961 . . . . . 6 (𝜑𝐹 = (𝑡𝐷 ↦ (𝐹𝑡)))
20 ftc1.i . . . . . 6 (𝜑𝐹 ∈ 𝐿1)
2119, 20eqeltrrd 2830 . . . . 5 (𝜑 → (𝑡𝐷 ↦ (𝐹𝑡)) ∈ 𝐿1)
2221adantr 480 . . . 4 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → (𝑡𝐷 ↦ (𝐹𝑡)) ∈ 𝐿1)
2314, 16, 17, 22iblss 25727 . . 3 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → (𝑡 ∈ (𝐴(,)𝑥) ↦ (𝐹𝑡)) ∈ 𝐿1)
241, 23itgcl 25706 . 2 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → ∫(𝐴(,)𝑥)(𝐹𝑡) d𝑡 ∈ ℂ)
25 ftc1.g . 2 𝐺 = (𝑥 ∈ (𝐴[,]𝐵) ↦ ∫(𝐴(,)𝑥)(𝐹𝑡) d𝑡)
2624, 25fmptd 7118 1 (𝜑𝐺:(𝐴[,]𝐵)⟶ℂ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1085   = wceq 1534  wcel 2099  Vcvv 3470  wss 3945   class class class wbr 5142  cmpt 5225  dom cdm 5672  wf 6538  cfv 6542  (class class class)co 7414  cc 11130  cr 11131  *cxr 11271  cle 11273  (,)cioo 13350  [,]cicc 13353  volcvol 25385  𝐿1cibl 25539  citg 25540
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-rep 5279  ax-sep 5293  ax-nul 5300  ax-pow 5359  ax-pr 5423  ax-un 7734  ax-inf2 9658  ax-cnex 11188  ax-resscn 11189  ax-1cn 11190  ax-icn 11191  ax-addcl 11192  ax-addrcl 11193  ax-mulcl 11194  ax-mulrcl 11195  ax-mulcom 11196  ax-addass 11197  ax-mulass 11198  ax-distr 11199  ax-i2m1 11200  ax-1ne0 11201  ax-1rid 11202  ax-rnegex 11203  ax-rrecex 11204  ax-cnre 11205  ax-pre-lttri 11206  ax-pre-lttrn 11207  ax-pre-ltadd 11208  ax-pre-mulgt0 11209  ax-pre-sup 11210
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2937  df-nel 3043  df-ral 3058  df-rex 3067  df-rmo 3372  df-reu 3373  df-rab 3429  df-v 3472  df-sbc 3776  df-csb 3891  df-dif 3948  df-un 3950  df-in 3952  df-ss 3962  df-pss 3964  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-int 4945  df-iun 4993  df-br 5143  df-opab 5205  df-mpt 5226  df-tr 5260  df-id 5570  df-eprel 5576  df-po 5584  df-so 5585  df-fr 5627  df-se 5628  df-we 5629  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-pred 6299  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-isom 6551  df-riota 7370  df-ov 7417  df-oprab 7418  df-mpo 7419  df-of 7679  df-ofr 7680  df-om 7865  df-1st 7987  df-2nd 7988  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-2o 8481  df-er 8718  df-map 8840  df-pm 8841  df-en 8958  df-dom 8959  df-sdom 8960  df-fin 8961  df-sup 9459  df-inf 9460  df-oi 9527  df-dju 9918  df-card 9956  df-pnf 11274  df-mnf 11275  df-xr 11276  df-ltxr 11277  df-le 11278  df-sub 11470  df-neg 11471  df-div 11896  df-nn 12237  df-2 12299  df-3 12300  df-4 12301  df-n0 12497  df-z 12583  df-uz 12847  df-q 12957  df-rp 13001  df-xadd 13119  df-ioo 13354  df-ico 13356  df-icc 13357  df-fz 13511  df-fzo 13654  df-fl 13783  df-mod 13861  df-seq 13993  df-exp 14053  df-hash 14316  df-cj 15072  df-re 15073  df-im 15074  df-sqrt 15208  df-abs 15209  df-clim 15458  df-rlim 15459  df-sum 15659  df-xmet 21265  df-met 21266  df-ovol 25386  df-vol 25387  df-mbf 25541  df-itg1 25542  df-itg2 25543  df-ibl 25544  df-itg 25545
This theorem is referenced by:  ftc1a  25965  ftc1lem5  25968  ftc1lem6  25969  ftc1  25970  ftc1cn  25971  ftc1cnnc  37159  ftc1anc  37168
  Copyright terms: Public domain W3C validator
OSZAR »