![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > gausslemma2dlem0h | Structured version Visualization version GIF version |
Description: Auxiliary lemma 8 for gausslemma2d 27323. (Contributed by AV, 9-Jul-2021.) |
Ref | Expression |
---|---|
gausslemma2dlem0.p | ⊢ (𝜑 → 𝑃 ∈ (ℙ ∖ {2})) |
gausslemma2dlem0.m | ⊢ 𝑀 = (⌊‘(𝑃 / 4)) |
gausslemma2dlem0.h | ⊢ 𝐻 = ((𝑃 − 1) / 2) |
gausslemma2dlem0.n | ⊢ 𝑁 = (𝐻 − 𝑀) |
Ref | Expression |
---|---|
gausslemma2dlem0h | ⊢ (𝜑 → 𝑁 ∈ ℕ0) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | gausslemma2dlem0.n | . 2 ⊢ 𝑁 = (𝐻 − 𝑀) | |
2 | gausslemma2dlem0.p | . . . . . 6 ⊢ (𝜑 → 𝑃 ∈ (ℙ ∖ {2})) | |
3 | gausslemma2dlem0.h | . . . . . 6 ⊢ 𝐻 = ((𝑃 − 1) / 2) | |
4 | 2, 3 | gausslemma2dlem0b 27306 | . . . . 5 ⊢ (𝜑 → 𝐻 ∈ ℕ) |
5 | 4 | nnzd 12613 | . . . 4 ⊢ (𝜑 → 𝐻 ∈ ℤ) |
6 | gausslemma2dlem0.m | . . . . . 6 ⊢ 𝑀 = (⌊‘(𝑃 / 4)) | |
7 | 2, 6 | gausslemma2dlem0d 27308 | . . . . 5 ⊢ (𝜑 → 𝑀 ∈ ℕ0) |
8 | 7 | nn0zd 12612 | . . . 4 ⊢ (𝜑 → 𝑀 ∈ ℤ) |
9 | 5, 8 | zsubcld 12699 | . . 3 ⊢ (𝜑 → (𝐻 − 𝑀) ∈ ℤ) |
10 | 2, 6, 3 | gausslemma2dlem0g 27311 | . . . 4 ⊢ (𝜑 → 𝑀 ≤ 𝐻) |
11 | 4 | nnred 12255 | . . . . 5 ⊢ (𝜑 → 𝐻 ∈ ℝ) |
12 | 7 | nn0red 12561 | . . . . 5 ⊢ (𝜑 → 𝑀 ∈ ℝ) |
13 | 11, 12 | subge0d 11832 | . . . 4 ⊢ (𝜑 → (0 ≤ (𝐻 − 𝑀) ↔ 𝑀 ≤ 𝐻)) |
14 | 10, 13 | mpbird 256 | . . 3 ⊢ (𝜑 → 0 ≤ (𝐻 − 𝑀)) |
15 | elnn0z 12599 | . . 3 ⊢ ((𝐻 − 𝑀) ∈ ℕ0 ↔ ((𝐻 − 𝑀) ∈ ℤ ∧ 0 ≤ (𝐻 − 𝑀))) | |
16 | 9, 14, 15 | sylanbrc 581 | . 2 ⊢ (𝜑 → (𝐻 − 𝑀) ∈ ℕ0) |
17 | 1, 16 | eqeltrid 2829 | 1 ⊢ (𝜑 → 𝑁 ∈ ℕ0) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1533 ∈ wcel 2098 ∖ cdif 3937 {csn 4624 class class class wbr 5143 ‘cfv 6542 (class class class)co 7415 0cc0 11136 1c1 11137 ≤ cle 11277 − cmin 11472 / cdiv 11899 2c2 12295 4c4 12297 ℕ0cn0 12500 ℤcz 12586 ⌊cfl 13785 ℙcprime 16639 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-sep 5294 ax-nul 5301 ax-pow 5359 ax-pr 5423 ax-un 7737 ax-cnex 11192 ax-resscn 11193 ax-1cn 11194 ax-icn 11195 ax-addcl 11196 ax-addrcl 11197 ax-mulcl 11198 ax-mulrcl 11199 ax-mulcom 11200 ax-addass 11201 ax-mulass 11202 ax-distr 11203 ax-i2m1 11204 ax-1ne0 11205 ax-1rid 11206 ax-rnegex 11207 ax-rrecex 11208 ax-cnre 11209 ax-pre-lttri 11210 ax-pre-lttrn 11211 ax-pre-ltadd 11212 ax-pre-mulgt0 11213 ax-pre-sup 11214 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3364 df-reu 3365 df-rab 3420 df-v 3465 df-sbc 3770 df-csb 3886 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-pss 3960 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5227 df-tr 5261 df-id 5570 df-eprel 5576 df-po 5584 df-so 5585 df-fr 5627 df-we 5629 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-riota 7371 df-ov 7418 df-oprab 7419 df-mpo 7420 df-om 7868 df-2nd 7990 df-frecs 8283 df-wrecs 8314 df-recs 8388 df-rdg 8427 df-1o 8483 df-2o 8484 df-er 8721 df-en 8961 df-dom 8962 df-sdom 8963 df-fin 8964 df-sup 9463 df-inf 9464 df-pnf 11278 df-mnf 11279 df-xr 11280 df-ltxr 11281 df-le 11282 df-sub 11474 df-neg 11475 df-div 11900 df-nn 12241 df-2 12303 df-3 12304 df-4 12305 df-n0 12501 df-z 12587 df-uz 12851 df-rp 13005 df-fl 13787 df-seq 13997 df-exp 14057 df-cj 15076 df-re 15077 df-im 15078 df-sqrt 15212 df-abs 15213 df-dvds 16229 df-prm 16640 |
This theorem is referenced by: gausslemma2dlem0i 27313 gausslemma2dlem6 27321 gausslemma2dlem7 27322 gausslemma2d 27323 |
Copyright terms: Public domain | W3C validator |