MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gausslemma2dlem0h Structured version   Visualization version   GIF version

Theorem gausslemma2dlem0h 27312
Description: Auxiliary lemma 8 for gausslemma2d 27323. (Contributed by AV, 9-Jul-2021.)
Hypotheses
Ref Expression
gausslemma2dlem0.p (𝜑𝑃 ∈ (ℙ ∖ {2}))
gausslemma2dlem0.m 𝑀 = (⌊‘(𝑃 / 4))
gausslemma2dlem0.h 𝐻 = ((𝑃 − 1) / 2)
gausslemma2dlem0.n 𝑁 = (𝐻𝑀)
Assertion
Ref Expression
gausslemma2dlem0h (𝜑𝑁 ∈ ℕ0)

Proof of Theorem gausslemma2dlem0h
StepHypRef Expression
1 gausslemma2dlem0.n . 2 𝑁 = (𝐻𝑀)
2 gausslemma2dlem0.p . . . . . 6 (𝜑𝑃 ∈ (ℙ ∖ {2}))
3 gausslemma2dlem0.h . . . . . 6 𝐻 = ((𝑃 − 1) / 2)
42, 3gausslemma2dlem0b 27306 . . . . 5 (𝜑𝐻 ∈ ℕ)
54nnzd 12613 . . . 4 (𝜑𝐻 ∈ ℤ)
6 gausslemma2dlem0.m . . . . . 6 𝑀 = (⌊‘(𝑃 / 4))
72, 6gausslemma2dlem0d 27308 . . . . 5 (𝜑𝑀 ∈ ℕ0)
87nn0zd 12612 . . . 4 (𝜑𝑀 ∈ ℤ)
95, 8zsubcld 12699 . . 3 (𝜑 → (𝐻𝑀) ∈ ℤ)
102, 6, 3gausslemma2dlem0g 27311 . . . 4 (𝜑𝑀𝐻)
114nnred 12255 . . . . 5 (𝜑𝐻 ∈ ℝ)
127nn0red 12561 . . . . 5 (𝜑𝑀 ∈ ℝ)
1311, 12subge0d 11832 . . . 4 (𝜑 → (0 ≤ (𝐻𝑀) ↔ 𝑀𝐻))
1410, 13mpbird 256 . . 3 (𝜑 → 0 ≤ (𝐻𝑀))
15 elnn0z 12599 . . 3 ((𝐻𝑀) ∈ ℕ0 ↔ ((𝐻𝑀) ∈ ℤ ∧ 0 ≤ (𝐻𝑀)))
169, 14, 15sylanbrc 581 . 2 (𝜑 → (𝐻𝑀) ∈ ℕ0)
171, 16eqeltrid 2829 1 (𝜑𝑁 ∈ ℕ0)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1533  wcel 2098  cdif 3937  {csn 4624   class class class wbr 5143  cfv 6542  (class class class)co 7415  0cc0 11136  1c1 11137  cle 11277  cmin 11472   / cdiv 11899  2c2 12295  4c4 12297  0cn0 12500  cz 12586  cfl 13785  cprime 16639
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-sep 5294  ax-nul 5301  ax-pow 5359  ax-pr 5423  ax-un 7737  ax-cnex 11192  ax-resscn 11193  ax-1cn 11194  ax-icn 11195  ax-addcl 11196  ax-addrcl 11197  ax-mulcl 11198  ax-mulrcl 11199  ax-mulcom 11200  ax-addass 11201  ax-mulass 11202  ax-distr 11203  ax-i2m1 11204  ax-1ne0 11205  ax-1rid 11206  ax-rnegex 11207  ax-rrecex 11208  ax-cnre 11209  ax-pre-lttri 11210  ax-pre-lttrn 11211  ax-pre-ltadd 11212  ax-pre-mulgt0 11213  ax-pre-sup 11214
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3364  df-reu 3365  df-rab 3420  df-v 3465  df-sbc 3770  df-csb 3886  df-dif 3943  df-un 3945  df-in 3947  df-ss 3957  df-pss 3960  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5227  df-tr 5261  df-id 5570  df-eprel 5576  df-po 5584  df-so 5585  df-fr 5627  df-we 5629  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-riota 7371  df-ov 7418  df-oprab 7419  df-mpo 7420  df-om 7868  df-2nd 7990  df-frecs 8283  df-wrecs 8314  df-recs 8388  df-rdg 8427  df-1o 8483  df-2o 8484  df-er 8721  df-en 8961  df-dom 8962  df-sdom 8963  df-fin 8964  df-sup 9463  df-inf 9464  df-pnf 11278  df-mnf 11279  df-xr 11280  df-ltxr 11281  df-le 11282  df-sub 11474  df-neg 11475  df-div 11900  df-nn 12241  df-2 12303  df-3 12304  df-4 12305  df-n0 12501  df-z 12587  df-uz 12851  df-rp 13005  df-fl 13787  df-seq 13997  df-exp 14057  df-cj 15076  df-re 15077  df-im 15078  df-sqrt 15212  df-abs 15213  df-dvds 16229  df-prm 16640
This theorem is referenced by:  gausslemma2dlem0i  27313  gausslemma2dlem6  27321  gausslemma2dlem7  27322  gausslemma2d  27323
  Copyright terms: Public domain W3C validator
OSZAR »