![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > grplid | Structured version Visualization version GIF version |
Description: The identity element of a group is a left identity. (Contributed by NM, 18-Aug-2011.) |
Ref | Expression |
---|---|
grpbn0.b | ⊢ 𝐵 = (Base‘𝐺) |
grplid.p | ⊢ + = (+g‘𝐺) |
grplid.o | ⊢ 0 = (0g‘𝐺) |
Ref | Expression |
---|---|
grplid | ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) → ( 0 + 𝑋) = 𝑋) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | grpmnd 18896 | . 2 ⊢ (𝐺 ∈ Grp → 𝐺 ∈ Mnd) | |
2 | grpbn0.b | . . 3 ⊢ 𝐵 = (Base‘𝐺) | |
3 | grplid.p | . . 3 ⊢ + = (+g‘𝐺) | |
4 | grplid.o | . . 3 ⊢ 0 = (0g‘𝐺) | |
5 | 2, 3, 4 | mndlid 18713 | . 2 ⊢ ((𝐺 ∈ Mnd ∧ 𝑋 ∈ 𝐵) → ( 0 + 𝑋) = 𝑋) |
6 | 1, 5 | sylan 579 | 1 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) → ( 0 + 𝑋) = 𝑋) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1534 ∈ wcel 2099 ‘cfv 6548 (class class class)co 7420 Basecbs 17179 +gcplusg 17232 0gc0g 17420 Mndcmnd 18693 Grpcgrp 18889 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-sep 5299 ax-nul 5306 ax-pr 5429 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-ral 3059 df-rex 3068 df-rmo 3373 df-reu 3374 df-rab 3430 df-v 3473 df-sbc 3777 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4909 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5576 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-iota 6500 df-fun 6550 df-fv 6556 df-riota 7376 df-ov 7423 df-0g 17422 df-mgm 18599 df-sgrp 18678 df-mnd 18694 df-grp 18892 |
This theorem is referenced by: grplidd 18925 grprcan 18929 grpid 18931 isgrpid2 18932 grprinv 18946 grpinvid1 18947 grpinvid2 18948 grpidinv2 18953 grpinvid 18955 grplcan 18956 grpasscan1 18957 grpidlcan 18960 grplmulf1o 18968 grpidssd 18971 grpinvadd 18973 grpinvval2 18978 grplactcnv 18998 imasgrp 19011 mulgaddcom 19052 mulgdirlem 19059 subg0 19086 issubg2 19095 issubg4 19099 0subgOLD 19106 isnsg3 19114 nmzsubg 19119 ssnmz 19120 eqgid 19134 qusgrp 19140 qus0 19143 ghmid 19175 conjghm 19202 subgga 19250 cntzsubg 19289 sylow1lem2 19553 sylow2blem2 19575 sylow2blem3 19576 sylow3lem1 19581 lsmmod 19629 lsmdisj2 19636 pj1rid 19656 abladdsub4 19765 ablpncan2 19769 ablpnpcan 19773 ablnncan 19774 odadd1 19802 odadd2 19803 oddvdssubg 19809 dprdfadd 19976 pgpfac1lem3a 20032 rnglz 20104 rngrz 20105 isabvd 20699 lmod0vlid 20774 lmod0vs 20777 freshmansdream 21507 evpmodpmf1o 21527 ocvlss 21603 lsmcss 21623 psr0lid 21895 mplsubglem 21940 mplcoe1 21974 mhpaddcl 22074 mdetunilem6 22518 mdetunilem9 22521 ghmcnp 24018 tgpt0 24022 qustgpopn 24023 mdegaddle 26009 ply1rem 26099 gsumsubg 32760 ogrpinv0le 32795 ogrpaddltrbid 32800 ogrpinv0lt 32802 ogrpinvlt 32803 cyc3genpmlem 32872 isarchi3 32895 archirngz 32897 archiabllem1b 32900 orngsqr 33019 ornglmulle 33020 orngrmulle 33021 qusker 33061 grplsm0l 33112 quslsm 33115 mxidlprm 33183 matunitlindflem1 37089 lfl0f 38541 lfladd0l 38546 lkrlss 38567 lkrin 38636 dvhgrp 40580 baerlem3lem1 41180 mapdh6bN 41210 hdmap1l6b 41284 hdmapinvlem3 41393 hdmapinvlem4 41394 hdmapglem7b 41401 fsuppind 41823 fsuppssind 41826 |
Copyright terms: Public domain | W3C validator |