![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > grpmnd | Structured version Visualization version GIF version |
Description: A group is a monoid. (Contributed by Mario Carneiro, 6-Jan-2015.) |
Ref | Expression |
---|---|
grpmnd | ⊢ (𝐺 ∈ Grp → 𝐺 ∈ Mnd) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2728 | . . 3 ⊢ (Base‘𝐺) = (Base‘𝐺) | |
2 | eqid 2728 | . . 3 ⊢ (+g‘𝐺) = (+g‘𝐺) | |
3 | eqid 2728 | . . 3 ⊢ (0g‘𝐺) = (0g‘𝐺) | |
4 | 1, 2, 3 | isgrp 18896 | . 2 ⊢ (𝐺 ∈ Grp ↔ (𝐺 ∈ Mnd ∧ ∀𝑎 ∈ (Base‘𝐺)∃𝑚 ∈ (Base‘𝐺)(𝑚(+g‘𝐺)𝑎) = (0g‘𝐺))) |
5 | 4 | simplbi 497 | 1 ⊢ (𝐺 ∈ Grp → 𝐺 ∈ Mnd) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1534 ∈ wcel 2099 ∀wral 3058 ∃wrex 3067 ‘cfv 6548 (class class class)co 7420 Basecbs 17180 +gcplusg 17233 0gc0g 17421 Mndcmnd 18694 Grpcgrp 18890 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-ext 2699 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-sb 2061 df-clab 2706 df-cleq 2720 df-clel 2806 df-ral 3059 df-rex 3068 df-rab 3430 df-v 3473 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4909 df-br 5149 df-iota 6500 df-fv 6556 df-ov 7423 df-grp 18893 |
This theorem is referenced by: grpcl 18898 grpass 18899 grpideu 18901 grpmndd 18903 grpplusf 18905 grpplusfo 18906 grpsgrp 18917 dfgrp2 18919 grpidcl 18922 grplid 18924 grprid 18925 dfgrp3 18995 prdsgrpd 19006 prdsinvgd 19007 mulgaddcom 19053 mulginvcom 19054 mulgz 19057 mulgneg2 19063 mulgass 19066 issubg3 19099 grpissubg 19101 0subg 19106 subgacs 19116 0ghm 19184 pwsdiagghm 19198 cntzsubg 19290 oppggrp 19311 symgsubmefmndALT 19358 psgnunilem5 19449 psgnuni 19454 0subgALT 19523 lsmcntzr 19635 pj1ghm 19658 isabl2 19745 cntrabl 19798 dprdfid 19974 dprdfeq0 19979 dprdlub 19983 dmdprdsplitlem 19994 dprddisj2 19996 dpjidcl 20015 pgpfaclem3 20040 simpgnideld 20056 c0ghm 20400 c0snghm 20403 dsmmsubg 21677 frlm0 21688 mdetunilem7 22533 istgp2 24008 cyc3genpm 32886 isarchi3 32908 reofld 33069 lbslsat 33314 dimkerim 33325 fedgmullem2 33328 primrootscoprbij 41573 pwssplit4 42513 pwslnmlem2 42517 lcoel0 47496 |
Copyright terms: Public domain | W3C validator |