MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pj1ghm Structured version   Visualization version   GIF version

Theorem pj1ghm 19651
Description: The left projection function is a group homomorphism. (Contributed by Mario Carneiro, 21-Apr-2016.)
Hypotheses
Ref Expression
pj1eu.a + = (+g𝐺)
pj1eu.s = (LSSum‘𝐺)
pj1eu.o 0 = (0g𝐺)
pj1eu.z 𝑍 = (Cntz‘𝐺)
pj1eu.2 (𝜑𝑇 ∈ (SubGrp‘𝐺))
pj1eu.3 (𝜑𝑈 ∈ (SubGrp‘𝐺))
pj1eu.4 (𝜑 → (𝑇𝑈) = { 0 })
pj1eu.5 (𝜑𝑇 ⊆ (𝑍𝑈))
pj1f.p 𝑃 = (proj1𝐺)
Assertion
Ref Expression
pj1ghm (𝜑 → (𝑇𝑃𝑈) ∈ ((𝐺s (𝑇 𝑈)) GrpHom 𝐺))

Proof of Theorem pj1ghm
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2728 . 2 (Base‘(𝐺s (𝑇 𝑈))) = (Base‘(𝐺s (𝑇 𝑈)))
2 eqid 2728 . 2 (Base‘𝐺) = (Base‘𝐺)
3 ovex 7447 . . 3 (𝑇 𝑈) ∈ V
4 eqid 2728 . . . 4 (𝐺s (𝑇 𝑈)) = (𝐺s (𝑇 𝑈))
5 pj1eu.a . . . 4 + = (+g𝐺)
64, 5ressplusg 17264 . . 3 ((𝑇 𝑈) ∈ V → + = (+g‘(𝐺s (𝑇 𝑈))))
73, 6ax-mp 5 . 2 + = (+g‘(𝐺s (𝑇 𝑈)))
8 pj1eu.2 . . . 4 (𝜑𝑇 ∈ (SubGrp‘𝐺))
9 pj1eu.3 . . . 4 (𝜑𝑈 ∈ (SubGrp‘𝐺))
10 pj1eu.5 . . . 4 (𝜑𝑇 ⊆ (𝑍𝑈))
11 pj1eu.s . . . . 5 = (LSSum‘𝐺)
12 pj1eu.z . . . . 5 𝑍 = (Cntz‘𝐺)
1311, 12lsmsubg 19602 . . . 4 ((𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺) ∧ 𝑇 ⊆ (𝑍𝑈)) → (𝑇 𝑈) ∈ (SubGrp‘𝐺))
148, 9, 10, 13syl3anc 1369 . . 3 (𝜑 → (𝑇 𝑈) ∈ (SubGrp‘𝐺))
154subggrp 19077 . . 3 ((𝑇 𝑈) ∈ (SubGrp‘𝐺) → (𝐺s (𝑇 𝑈)) ∈ Grp)
1614, 15syl 17 . 2 (𝜑 → (𝐺s (𝑇 𝑈)) ∈ Grp)
17 subgrcl 19079 . . 3 (𝑇 ∈ (SubGrp‘𝐺) → 𝐺 ∈ Grp)
188, 17syl 17 . 2 (𝜑𝐺 ∈ Grp)
19 pj1eu.o . . . . 5 0 = (0g𝐺)
20 pj1eu.4 . . . . 5 (𝜑 → (𝑇𝑈) = { 0 })
21 pj1f.p . . . . 5 𝑃 = (proj1𝐺)
225, 11, 19, 12, 8, 9, 20, 10, 21pj1f 19645 . . . 4 (𝜑 → (𝑇𝑃𝑈):(𝑇 𝑈)⟶𝑇)
232subgss 19075 . . . . 5 (𝑇 ∈ (SubGrp‘𝐺) → 𝑇 ⊆ (Base‘𝐺))
248, 23syl 17 . . . 4 (𝜑𝑇 ⊆ (Base‘𝐺))
2522, 24fssd 6734 . . 3 (𝜑 → (𝑇𝑃𝑈):(𝑇 𝑈)⟶(Base‘𝐺))
264subgbas 19078 . . . . 5 ((𝑇 𝑈) ∈ (SubGrp‘𝐺) → (𝑇 𝑈) = (Base‘(𝐺s (𝑇 𝑈))))
2714, 26syl 17 . . . 4 (𝜑 → (𝑇 𝑈) = (Base‘(𝐺s (𝑇 𝑈))))
2827feq2d 6702 . . 3 (𝜑 → ((𝑇𝑃𝑈):(𝑇 𝑈)⟶(Base‘𝐺) ↔ (𝑇𝑃𝑈):(Base‘(𝐺s (𝑇 𝑈)))⟶(Base‘𝐺)))
2925, 28mpbid 231 . 2 (𝜑 → (𝑇𝑃𝑈):(Base‘(𝐺s (𝑇 𝑈)))⟶(Base‘𝐺))
3027eleq2d 2815 . . . . 5 (𝜑 → (𝑥 ∈ (𝑇 𝑈) ↔ 𝑥 ∈ (Base‘(𝐺s (𝑇 𝑈)))))
3127eleq2d 2815 . . . . 5 (𝜑 → (𝑦 ∈ (𝑇 𝑈) ↔ 𝑦 ∈ (Base‘(𝐺s (𝑇 𝑈)))))
3230, 31anbi12d 631 . . . 4 (𝜑 → ((𝑥 ∈ (𝑇 𝑈) ∧ 𝑦 ∈ (𝑇 𝑈)) ↔ (𝑥 ∈ (Base‘(𝐺s (𝑇 𝑈))) ∧ 𝑦 ∈ (Base‘(𝐺s (𝑇 𝑈))))))
3332biimpar 477 . . 3 ((𝜑 ∧ (𝑥 ∈ (Base‘(𝐺s (𝑇 𝑈))) ∧ 𝑦 ∈ (Base‘(𝐺s (𝑇 𝑈))))) → (𝑥 ∈ (𝑇 𝑈) ∧ 𝑦 ∈ (𝑇 𝑈)))
345, 11, 19, 12, 8, 9, 20, 10, 21pj1id 19647 . . . . . . . 8 ((𝜑𝑥 ∈ (𝑇 𝑈)) → 𝑥 = (((𝑇𝑃𝑈)‘𝑥) + ((𝑈𝑃𝑇)‘𝑥)))
3534adantrr 716 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (𝑇 𝑈) ∧ 𝑦 ∈ (𝑇 𝑈))) → 𝑥 = (((𝑇𝑃𝑈)‘𝑥) + ((𝑈𝑃𝑇)‘𝑥)))
365, 11, 19, 12, 8, 9, 20, 10, 21pj1id 19647 . . . . . . . 8 ((𝜑𝑦 ∈ (𝑇 𝑈)) → 𝑦 = (((𝑇𝑃𝑈)‘𝑦) + ((𝑈𝑃𝑇)‘𝑦)))
3736adantrl 715 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (𝑇 𝑈) ∧ 𝑦 ∈ (𝑇 𝑈))) → 𝑦 = (((𝑇𝑃𝑈)‘𝑦) + ((𝑈𝑃𝑇)‘𝑦)))
3835, 37oveq12d 7432 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (𝑇 𝑈) ∧ 𝑦 ∈ (𝑇 𝑈))) → (𝑥 + 𝑦) = ((((𝑇𝑃𝑈)‘𝑥) + ((𝑈𝑃𝑇)‘𝑥)) + (((𝑇𝑃𝑈)‘𝑦) + ((𝑈𝑃𝑇)‘𝑦))))
398adantr 480 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ (𝑇 𝑈) ∧ 𝑦 ∈ (𝑇 𝑈))) → 𝑇 ∈ (SubGrp‘𝐺))
40 grpmnd 18890 . . . . . . . 8 (𝐺 ∈ Grp → 𝐺 ∈ Mnd)
4139, 17, 403syl 18 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (𝑇 𝑈) ∧ 𝑦 ∈ (𝑇 𝑈))) → 𝐺 ∈ Mnd)
4239, 23syl 17 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ (𝑇 𝑈) ∧ 𝑦 ∈ (𝑇 𝑈))) → 𝑇 ⊆ (Base‘𝐺))
43 simpl 482 . . . . . . . . 9 ((𝑥 ∈ (𝑇 𝑈) ∧ 𝑦 ∈ (𝑇 𝑈)) → 𝑥 ∈ (𝑇 𝑈))
44 ffvelcdm 7085 . . . . . . . . 9 (((𝑇𝑃𝑈):(𝑇 𝑈)⟶𝑇𝑥 ∈ (𝑇 𝑈)) → ((𝑇𝑃𝑈)‘𝑥) ∈ 𝑇)
4522, 43, 44syl2an 595 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ (𝑇 𝑈) ∧ 𝑦 ∈ (𝑇 𝑈))) → ((𝑇𝑃𝑈)‘𝑥) ∈ 𝑇)
4642, 45sseldd 3979 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (𝑇 𝑈) ∧ 𝑦 ∈ (𝑇 𝑈))) → ((𝑇𝑃𝑈)‘𝑥) ∈ (Base‘𝐺))
47 simpr 484 . . . . . . . . 9 ((𝑥 ∈ (𝑇 𝑈) ∧ 𝑦 ∈ (𝑇 𝑈)) → 𝑦 ∈ (𝑇 𝑈))
48 ffvelcdm 7085 . . . . . . . . 9 (((𝑇𝑃𝑈):(𝑇 𝑈)⟶𝑇𝑦 ∈ (𝑇 𝑈)) → ((𝑇𝑃𝑈)‘𝑦) ∈ 𝑇)
4922, 47, 48syl2an 595 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ (𝑇 𝑈) ∧ 𝑦 ∈ (𝑇 𝑈))) → ((𝑇𝑃𝑈)‘𝑦) ∈ 𝑇)
5042, 49sseldd 3979 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (𝑇 𝑈) ∧ 𝑦 ∈ (𝑇 𝑈))) → ((𝑇𝑃𝑈)‘𝑦) ∈ (Base‘𝐺))
519adantr 480 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ (𝑇 𝑈) ∧ 𝑦 ∈ (𝑇 𝑈))) → 𝑈 ∈ (SubGrp‘𝐺))
522subgss 19075 . . . . . . . . 9 (𝑈 ∈ (SubGrp‘𝐺) → 𝑈 ⊆ (Base‘𝐺))
5351, 52syl 17 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ (𝑇 𝑈) ∧ 𝑦 ∈ (𝑇 𝑈))) → 𝑈 ⊆ (Base‘𝐺))
545, 11, 19, 12, 8, 9, 20, 10, 21pj2f 19646 . . . . . . . . 9 (𝜑 → (𝑈𝑃𝑇):(𝑇 𝑈)⟶𝑈)
55 ffvelcdm 7085 . . . . . . . . 9 (((𝑈𝑃𝑇):(𝑇 𝑈)⟶𝑈𝑥 ∈ (𝑇 𝑈)) → ((𝑈𝑃𝑇)‘𝑥) ∈ 𝑈)
5654, 43, 55syl2an 595 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ (𝑇 𝑈) ∧ 𝑦 ∈ (𝑇 𝑈))) → ((𝑈𝑃𝑇)‘𝑥) ∈ 𝑈)
5753, 56sseldd 3979 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (𝑇 𝑈) ∧ 𝑦 ∈ (𝑇 𝑈))) → ((𝑈𝑃𝑇)‘𝑥) ∈ (Base‘𝐺))
58 ffvelcdm 7085 . . . . . . . . 9 (((𝑈𝑃𝑇):(𝑇 𝑈)⟶𝑈𝑦 ∈ (𝑇 𝑈)) → ((𝑈𝑃𝑇)‘𝑦) ∈ 𝑈)
5954, 47, 58syl2an 595 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ (𝑇 𝑈) ∧ 𝑦 ∈ (𝑇 𝑈))) → ((𝑈𝑃𝑇)‘𝑦) ∈ 𝑈)
6053, 59sseldd 3979 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (𝑇 𝑈) ∧ 𝑦 ∈ (𝑇 𝑈))) → ((𝑈𝑃𝑇)‘𝑦) ∈ (Base‘𝐺))
6110adantr 480 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ (𝑇 𝑈) ∧ 𝑦 ∈ (𝑇 𝑈))) → 𝑇 ⊆ (𝑍𝑈))
6261, 49sseldd 3979 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ (𝑇 𝑈) ∧ 𝑦 ∈ (𝑇 𝑈))) → ((𝑇𝑃𝑈)‘𝑦) ∈ (𝑍𝑈))
635, 12cntzi 19273 . . . . . . . 8 ((((𝑇𝑃𝑈)‘𝑦) ∈ (𝑍𝑈) ∧ ((𝑈𝑃𝑇)‘𝑥) ∈ 𝑈) → (((𝑇𝑃𝑈)‘𝑦) + ((𝑈𝑃𝑇)‘𝑥)) = (((𝑈𝑃𝑇)‘𝑥) + ((𝑇𝑃𝑈)‘𝑦)))
6462, 56, 63syl2anc 583 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (𝑇 𝑈) ∧ 𝑦 ∈ (𝑇 𝑈))) → (((𝑇𝑃𝑈)‘𝑦) + ((𝑈𝑃𝑇)‘𝑥)) = (((𝑈𝑃𝑇)‘𝑥) + ((𝑇𝑃𝑈)‘𝑦)))
652, 5, 41, 46, 50, 57, 60, 64mnd4g 18701 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (𝑇 𝑈) ∧ 𝑦 ∈ (𝑇 𝑈))) → ((((𝑇𝑃𝑈)‘𝑥) + ((𝑇𝑃𝑈)‘𝑦)) + (((𝑈𝑃𝑇)‘𝑥) + ((𝑈𝑃𝑇)‘𝑦))) = ((((𝑇𝑃𝑈)‘𝑥) + ((𝑈𝑃𝑇)‘𝑥)) + (((𝑇𝑃𝑈)‘𝑦) + ((𝑈𝑃𝑇)‘𝑦))))
6638, 65eqtr4d 2771 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (𝑇 𝑈) ∧ 𝑦 ∈ (𝑇 𝑈))) → (𝑥 + 𝑦) = ((((𝑇𝑃𝑈)‘𝑥) + ((𝑇𝑃𝑈)‘𝑦)) + (((𝑈𝑃𝑇)‘𝑥) + ((𝑈𝑃𝑇)‘𝑦))))
6720adantr 480 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (𝑇 𝑈) ∧ 𝑦 ∈ (𝑇 𝑈))) → (𝑇𝑈) = { 0 })
685subgcl 19084 . . . . . . . 8 (((𝑇 𝑈) ∈ (SubGrp‘𝐺) ∧ 𝑥 ∈ (𝑇 𝑈) ∧ 𝑦 ∈ (𝑇 𝑈)) → (𝑥 + 𝑦) ∈ (𝑇 𝑈))
69683expb 1118 . . . . . . 7 (((𝑇 𝑈) ∈ (SubGrp‘𝐺) ∧ (𝑥 ∈ (𝑇 𝑈) ∧ 𝑦 ∈ (𝑇 𝑈))) → (𝑥 + 𝑦) ∈ (𝑇 𝑈))
7014, 69sylan 579 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (𝑇 𝑈) ∧ 𝑦 ∈ (𝑇 𝑈))) → (𝑥 + 𝑦) ∈ (𝑇 𝑈))
715subgcl 19084 . . . . . . 7 ((𝑇 ∈ (SubGrp‘𝐺) ∧ ((𝑇𝑃𝑈)‘𝑥) ∈ 𝑇 ∧ ((𝑇𝑃𝑈)‘𝑦) ∈ 𝑇) → (((𝑇𝑃𝑈)‘𝑥) + ((𝑇𝑃𝑈)‘𝑦)) ∈ 𝑇)
7239, 45, 49, 71syl3anc 1369 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (𝑇 𝑈) ∧ 𝑦 ∈ (𝑇 𝑈))) → (((𝑇𝑃𝑈)‘𝑥) + ((𝑇𝑃𝑈)‘𝑦)) ∈ 𝑇)
735subgcl 19084 . . . . . . 7 ((𝑈 ∈ (SubGrp‘𝐺) ∧ ((𝑈𝑃𝑇)‘𝑥) ∈ 𝑈 ∧ ((𝑈𝑃𝑇)‘𝑦) ∈ 𝑈) → (((𝑈𝑃𝑇)‘𝑥) + ((𝑈𝑃𝑇)‘𝑦)) ∈ 𝑈)
7451, 56, 59, 73syl3anc 1369 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (𝑇 𝑈) ∧ 𝑦 ∈ (𝑇 𝑈))) → (((𝑈𝑃𝑇)‘𝑥) + ((𝑈𝑃𝑇)‘𝑦)) ∈ 𝑈)
755, 11, 19, 12, 39, 51, 67, 61, 21, 70, 72, 74pj1eq 19648 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (𝑇 𝑈) ∧ 𝑦 ∈ (𝑇 𝑈))) → ((𝑥 + 𝑦) = ((((𝑇𝑃𝑈)‘𝑥) + ((𝑇𝑃𝑈)‘𝑦)) + (((𝑈𝑃𝑇)‘𝑥) + ((𝑈𝑃𝑇)‘𝑦))) ↔ (((𝑇𝑃𝑈)‘(𝑥 + 𝑦)) = (((𝑇𝑃𝑈)‘𝑥) + ((𝑇𝑃𝑈)‘𝑦)) ∧ ((𝑈𝑃𝑇)‘(𝑥 + 𝑦)) = (((𝑈𝑃𝑇)‘𝑥) + ((𝑈𝑃𝑇)‘𝑦)))))
7666, 75mpbid 231 . . . 4 ((𝜑 ∧ (𝑥 ∈ (𝑇 𝑈) ∧ 𝑦 ∈ (𝑇 𝑈))) → (((𝑇𝑃𝑈)‘(𝑥 + 𝑦)) = (((𝑇𝑃𝑈)‘𝑥) + ((𝑇𝑃𝑈)‘𝑦)) ∧ ((𝑈𝑃𝑇)‘(𝑥 + 𝑦)) = (((𝑈𝑃𝑇)‘𝑥) + ((𝑈𝑃𝑇)‘𝑦))))
7776simpld 494 . . 3 ((𝜑 ∧ (𝑥 ∈ (𝑇 𝑈) ∧ 𝑦 ∈ (𝑇 𝑈))) → ((𝑇𝑃𝑈)‘(𝑥 + 𝑦)) = (((𝑇𝑃𝑈)‘𝑥) + ((𝑇𝑃𝑈)‘𝑦)))
7833, 77syldan 590 . 2 ((𝜑 ∧ (𝑥 ∈ (Base‘(𝐺s (𝑇 𝑈))) ∧ 𝑦 ∈ (Base‘(𝐺s (𝑇 𝑈))))) → ((𝑇𝑃𝑈)‘(𝑥 + 𝑦)) = (((𝑇𝑃𝑈)‘𝑥) + ((𝑇𝑃𝑈)‘𝑦)))
791, 2, 7, 5, 16, 18, 29, 78isghmd 19172 1 (𝜑 → (𝑇𝑃𝑈) ∈ ((𝐺s (𝑇 𝑈)) GrpHom 𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1534  wcel 2099  Vcvv 3470  cin 3944  wss 3945  {csn 4624  wf 6538  cfv 6542  (class class class)co 7414  Basecbs 17173  s cress 17202  +gcplusg 17226  0gc0g 17414  Mndcmnd 18687  Grpcgrp 18883  SubGrpcsubg 19068   GrpHom cghm 19160  Cntzccntz 19259  LSSumclsm 19582  proj1cpj1 19583
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-rep 5279  ax-sep 5293  ax-nul 5300  ax-pow 5359  ax-pr 5423  ax-un 7734  ax-cnex 11188  ax-resscn 11189  ax-1cn 11190  ax-icn 11191  ax-addcl 11192  ax-addrcl 11193  ax-mulcl 11194  ax-mulrcl 11195  ax-mulcom 11196  ax-addass 11197  ax-mulass 11198  ax-distr 11199  ax-i2m1 11200  ax-1ne0 11201  ax-1rid 11202  ax-rnegex 11203  ax-rrecex 11204  ax-cnre 11205  ax-pre-lttri 11206  ax-pre-lttrn 11207  ax-pre-ltadd 11208  ax-pre-mulgt0 11209
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2937  df-nel 3043  df-ral 3058  df-rex 3067  df-rmo 3372  df-reu 3373  df-rab 3429  df-v 3472  df-sbc 3776  df-csb 3891  df-dif 3948  df-un 3950  df-in 3952  df-ss 3962  df-pss 3964  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-iun 4993  df-br 5143  df-opab 5205  df-mpt 5226  df-tr 5260  df-id 5570  df-eprel 5576  df-po 5584  df-so 5585  df-fr 5627  df-we 5629  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-pred 6299  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-riota 7370  df-ov 7417  df-oprab 7418  df-mpo 7419  df-om 7865  df-1st 7987  df-2nd 7988  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-er 8718  df-en 8958  df-dom 8959  df-sdom 8960  df-pnf 11274  df-mnf 11275  df-xr 11276  df-ltxr 11277  df-le 11278  df-sub 11470  df-neg 11471  df-nn 12237  df-2 12299  df-sets 17126  df-slot 17144  df-ndx 17156  df-base 17174  df-ress 17203  df-plusg 17239  df-0g 17416  df-mgm 18593  df-sgrp 18672  df-mnd 18688  df-submnd 18734  df-grp 18886  df-minusg 18887  df-sbg 18888  df-subg 19071  df-ghm 19161  df-cntz 19261  df-lsm 19584  df-pj1 19585
This theorem is referenced by:  pj1ghm2  19652  dpjghm  20013  pj1lmhm  20978
  Copyright terms: Public domain W3C validator
OSZAR »