MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pj1f Structured version   Visualization version   GIF version

Theorem pj1f 19652
Description: The left projection function maps a direct subspace sum onto the left factor. (Contributed by Mario Carneiro, 15-Oct-2015.)
Hypotheses
Ref Expression
pj1eu.a + = (+g𝐺)
pj1eu.s = (LSSum‘𝐺)
pj1eu.o 0 = (0g𝐺)
pj1eu.z 𝑍 = (Cntz‘𝐺)
pj1eu.2 (𝜑𝑇 ∈ (SubGrp‘𝐺))
pj1eu.3 (𝜑𝑈 ∈ (SubGrp‘𝐺))
pj1eu.4 (𝜑 → (𝑇𝑈) = { 0 })
pj1eu.5 (𝜑𝑇 ⊆ (𝑍𝑈))
pj1f.p 𝑃 = (proj1𝐺)
Assertion
Ref Expression
pj1f (𝜑 → (𝑇𝑃𝑈):(𝑇 𝑈)⟶𝑇)

Proof of Theorem pj1f
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pj1eu.2 . . . 4 (𝜑𝑇 ∈ (SubGrp‘𝐺))
2 subgrcl 19086 . . . 4 (𝑇 ∈ (SubGrp‘𝐺) → 𝐺 ∈ Grp)
31, 2syl 17 . . 3 (𝜑𝐺 ∈ Grp)
4 eqid 2728 . . . . 5 (Base‘𝐺) = (Base‘𝐺)
54subgss 19082 . . . 4 (𝑇 ∈ (SubGrp‘𝐺) → 𝑇 ⊆ (Base‘𝐺))
61, 5syl 17 . . 3 (𝜑𝑇 ⊆ (Base‘𝐺))
7 pj1eu.3 . . . 4 (𝜑𝑈 ∈ (SubGrp‘𝐺))
84subgss 19082 . . . 4 (𝑈 ∈ (SubGrp‘𝐺) → 𝑈 ⊆ (Base‘𝐺))
97, 8syl 17 . . 3 (𝜑𝑈 ⊆ (Base‘𝐺))
10 pj1eu.a . . . 4 + = (+g𝐺)
11 pj1eu.s . . . 4 = (LSSum‘𝐺)
12 pj1f.p . . . 4 𝑃 = (proj1𝐺)
134, 10, 11, 12pj1fval 19649 . . 3 ((𝐺 ∈ Grp ∧ 𝑇 ⊆ (Base‘𝐺) ∧ 𝑈 ⊆ (Base‘𝐺)) → (𝑇𝑃𝑈) = (𝑧 ∈ (𝑇 𝑈) ↦ (𝑥𝑇𝑦𝑈 𝑧 = (𝑥 + 𝑦))))
143, 6, 9, 13syl3anc 1369 . 2 (𝜑 → (𝑇𝑃𝑈) = (𝑧 ∈ (𝑇 𝑈) ↦ (𝑥𝑇𝑦𝑈 𝑧 = (𝑥 + 𝑦))))
15 pj1eu.o . . . 4 0 = (0g𝐺)
16 pj1eu.z . . . 4 𝑍 = (Cntz‘𝐺)
17 pj1eu.4 . . . 4 (𝜑 → (𝑇𝑈) = { 0 })
18 pj1eu.5 . . . 4 (𝜑𝑇 ⊆ (𝑍𝑈))
1910, 11, 15, 16, 1, 7, 17, 18pj1eu 19651 . . 3 ((𝜑𝑧 ∈ (𝑇 𝑈)) → ∃!𝑥𝑇𝑦𝑈 𝑧 = (𝑥 + 𝑦))
20 riotacl 7394 . . 3 (∃!𝑥𝑇𝑦𝑈 𝑧 = (𝑥 + 𝑦) → (𝑥𝑇𝑦𝑈 𝑧 = (𝑥 + 𝑦)) ∈ 𝑇)
2119, 20syl 17 . 2 ((𝜑𝑧 ∈ (𝑇 𝑈)) → (𝑥𝑇𝑦𝑈 𝑧 = (𝑥 + 𝑦)) ∈ 𝑇)
2214, 21fmpt3d 7126 1 (𝜑 → (𝑇𝑃𝑈):(𝑇 𝑈)⟶𝑇)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1534  wcel 2099  wrex 3067  ∃!wreu 3371  cin 3946  wss 3947  {csn 4629  cmpt 5231  wf 6544  cfv 6548  crio 7375  (class class class)co 7420  Basecbs 17180  +gcplusg 17233  0gc0g 17421  Grpcgrp 18890  SubGrpcsubg 19075  Cntzccntz 19266  LSSumclsm 19589  proj1cpj1 19590
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5365  ax-pr 5429  ax-un 7740  ax-cnex 11195  ax-resscn 11196  ax-1cn 11197  ax-icn 11198  ax-addcl 11199  ax-addrcl 11200  ax-mulcl 11201  ax-mulrcl 11202  ax-mulcom 11203  ax-addass 11204  ax-mulass 11205  ax-distr 11206  ax-i2m1 11207  ax-1ne0 11208  ax-1rid 11209  ax-rnegex 11210  ax-rrecex 11211  ax-cnre 11212  ax-pre-lttri 11213  ax-pre-lttrn 11214  ax-pre-ltadd 11215  ax-pre-mulgt0 11216
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3373  df-reu 3374  df-rab 3430  df-v 3473  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4909  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5576  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5633  df-we 5635  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-pred 6305  df-ord 6372  df-on 6373  df-lim 6374  df-suc 6375  df-iota 6500  df-fun 6550  df-fn 6551  df-f 6552  df-f1 6553  df-fo 6554  df-f1o 6555  df-fv 6556  df-riota 7376  df-ov 7423  df-oprab 7424  df-mpo 7425  df-om 7871  df-1st 7993  df-2nd 7994  df-frecs 8287  df-wrecs 8318  df-recs 8392  df-rdg 8431  df-er 8725  df-en 8965  df-dom 8966  df-sdom 8967  df-pnf 11281  df-mnf 11282  df-xr 11283  df-ltxr 11284  df-le 11285  df-sub 11477  df-neg 11478  df-nn 12244  df-2 12306  df-sets 17133  df-slot 17151  df-ndx 17163  df-base 17181  df-ress 17210  df-plusg 17246  df-0g 17423  df-mgm 18600  df-sgrp 18679  df-mnd 18695  df-grp 18893  df-minusg 18894  df-sbg 18895  df-subg 19078  df-cntz 19268  df-lsm 19591  df-pj1 19592
This theorem is referenced by:  pj2f  19653  pj1id  19654  pj1eq  19655  pj1ghm  19658  pj1ghm2  19659  lsmhash  19660  dpjf  20014  pj1lmhm  20985  pj1lmhm2  20986  pjdm2  21645  pjf2  21648
  Copyright terms: Public domain W3C validator
OSZAR »