![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > symgsubmefmndALT | Structured version Visualization version GIF version |
Description: The symmetric group on a set 𝐴 is a submonoid of the monoid of endofunctions on 𝐴. Alternate proof based on issubmndb 18764 and not on injsubmefmnd 18856 and sursubmefmnd 18855. (Contributed by AV, 18-Feb-2024.) (Revised by AV, 30-Mar-2024.) (New usage is discouraged.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
symgsubmefmndALT.m | ⊢ 𝑀 = (EndoFMnd‘𝐴) |
symgsubmefmndALT.g | ⊢ 𝐺 = (SymGrp‘𝐴) |
symgsubmefmndALT.b | ⊢ 𝐵 = (Base‘𝐺) |
Ref | Expression |
---|---|
symgsubmefmndALT | ⊢ (𝐴 ∈ 𝑉 → 𝐵 ∈ (SubMnd‘𝑀)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | symgsubmefmndALT.m | . . 3 ⊢ 𝑀 = (EndoFMnd‘𝐴) | |
2 | 1 | efmndmnd 18848 | . 2 ⊢ (𝐴 ∈ 𝑉 → 𝑀 ∈ Mnd) |
3 | symgsubmefmndALT.g | . . . 4 ⊢ 𝐺 = (SymGrp‘𝐴) | |
4 | symgsubmefmndALT.b | . . . 4 ⊢ 𝐵 = (Base‘𝐺) | |
5 | 3, 4, 1 | symgressbas 19343 | . . 3 ⊢ 𝐺 = (𝑀 ↾s 𝐵) |
6 | 3 | symggrp 19362 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → 𝐺 ∈ Grp) |
7 | grpmnd 18904 | . . . 4 ⊢ (𝐺 ∈ Grp → 𝐺 ∈ Mnd) | |
8 | 6, 7 | syl 17 | . . 3 ⊢ (𝐴 ∈ 𝑉 → 𝐺 ∈ Mnd) |
9 | 5, 8 | eqeltrrid 2834 | . 2 ⊢ (𝐴 ∈ 𝑉 → (𝑀 ↾s 𝐵) ∈ Mnd) |
10 | 3 | idresperm 19347 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → ( I ↾ 𝐴) ∈ (Base‘𝐺)) |
11 | 1 | efmndid 18847 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → ( I ↾ 𝐴) = (0g‘𝑀)) |
12 | 4 | eqcomi 2737 | . . . . 5 ⊢ (Base‘𝐺) = 𝐵 |
13 | 12 | a1i 11 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → (Base‘𝐺) = 𝐵) |
14 | 10, 11, 13 | 3eltr3d 2843 | . . 3 ⊢ (𝐴 ∈ 𝑉 → (0g‘𝑀) ∈ 𝐵) |
15 | 3, 4 | symgbasmap 19338 | . . . . 5 ⊢ (𝑓 ∈ 𝐵 → 𝑓 ∈ (𝐴 ↑m 𝐴)) |
16 | 15 | ssriv 3986 | . . . 4 ⊢ 𝐵 ⊆ (𝐴 ↑m 𝐴) |
17 | eqid 2728 | . . . . 5 ⊢ (Base‘𝑀) = (Base‘𝑀) | |
18 | 1, 17 | efmndbas 18830 | . . . 4 ⊢ (Base‘𝑀) = (𝐴 ↑m 𝐴) |
19 | 16, 18 | sseqtrri 4019 | . . 3 ⊢ 𝐵 ⊆ (Base‘𝑀) |
20 | 14, 19 | jctil 518 | . 2 ⊢ (𝐴 ∈ 𝑉 → (𝐵 ⊆ (Base‘𝑀) ∧ (0g‘𝑀) ∈ 𝐵)) |
21 | eqid 2728 | . . 3 ⊢ (0g‘𝑀) = (0g‘𝑀) | |
22 | 17, 21 | issubmndb 18764 | . 2 ⊢ (𝐵 ∈ (SubMnd‘𝑀) ↔ ((𝑀 ∈ Mnd ∧ (𝑀 ↾s 𝐵) ∈ Mnd) ∧ (𝐵 ⊆ (Base‘𝑀) ∧ (0g‘𝑀) ∈ 𝐵))) |
23 | 2, 9, 20, 22 | syl21anbrc 1341 | 1 ⊢ (𝐴 ∈ 𝑉 → 𝐵 ∈ (SubMnd‘𝑀)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 = wceq 1533 ∈ wcel 2098 ⊆ wss 3949 I cid 5579 ↾ cres 5684 ‘cfv 6553 (class class class)co 7426 ↑m cmap 8851 Basecbs 17187 ↾s cress 17216 0gc0g 17428 Mndcmnd 18701 SubMndcsubmnd 18746 EndoFMndcefmnd 18827 Grpcgrp 18897 SymGrpcsymg 19328 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2699 ax-rep 5289 ax-sep 5303 ax-nul 5310 ax-pow 5369 ax-pr 5433 ax-un 7746 ax-cnex 11202 ax-resscn 11203 ax-1cn 11204 ax-icn 11205 ax-addcl 11206 ax-addrcl 11207 ax-mulcl 11208 ax-mulrcl 11209 ax-mulcom 11210 ax-addass 11211 ax-mulass 11212 ax-distr 11213 ax-i2m1 11214 ax-1ne0 11215 ax-1rid 11216 ax-rnegex 11217 ax-rrecex 11218 ax-cnre 11219 ax-pre-lttri 11220 ax-pre-lttrn 11221 ax-pre-ltadd 11222 ax-pre-mulgt0 11223 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2529 df-eu 2558 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-rmo 3374 df-reu 3375 df-rab 3431 df-v 3475 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4327 df-if 4533 df-pw 4608 df-sn 4633 df-pr 4635 df-tp 4637 df-op 4639 df-uni 4913 df-iun 5002 df-br 5153 df-opab 5215 df-mpt 5236 df-tr 5270 df-id 5580 df-eprel 5586 df-po 5594 df-so 5595 df-fr 5637 df-we 5639 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-rn 5693 df-res 5694 df-ima 5695 df-pred 6310 df-ord 6377 df-on 6378 df-lim 6379 df-suc 6380 df-iota 6505 df-fun 6555 df-fn 6556 df-f 6557 df-f1 6558 df-fo 6559 df-f1o 6560 df-fv 6561 df-riota 7382 df-ov 7429 df-oprab 7430 df-mpo 7431 df-om 7877 df-1st 7999 df-2nd 8000 df-frecs 8293 df-wrecs 8324 df-recs 8398 df-rdg 8437 df-1o 8493 df-er 8731 df-map 8853 df-en 8971 df-dom 8972 df-sdom 8973 df-fin 8974 df-pnf 11288 df-mnf 11289 df-xr 11290 df-ltxr 11291 df-le 11292 df-sub 11484 df-neg 11485 df-nn 12251 df-2 12313 df-3 12314 df-4 12315 df-5 12316 df-6 12317 df-7 12318 df-8 12319 df-9 12320 df-n0 12511 df-z 12597 df-uz 12861 df-fz 13525 df-struct 17123 df-sets 17140 df-slot 17158 df-ndx 17170 df-base 17188 df-ress 17217 df-plusg 17253 df-tset 17259 df-0g 17430 df-mgm 18607 df-sgrp 18686 df-mnd 18702 df-submnd 18748 df-efmnd 18828 df-grp 18900 df-symg 19329 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |