MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hashbnd Structured version   Visualization version   GIF version

Theorem hashbnd 14328
Description: If 𝐴 has size bounded by an integer 𝐵, then 𝐴 is finite. (Contributed by Mario Carneiro, 14-Jun-2015.)
Assertion
Ref Expression
hashbnd ((𝐴𝑉𝐵 ∈ ℕ0 ∧ (♯‘𝐴) ≤ 𝐵) → 𝐴 ∈ Fin)

Proof of Theorem hashbnd
StepHypRef Expression
1 nn0re 12512 . . . . . . 7 (𝐵 ∈ ℕ0𝐵 ∈ ℝ)
2 ltpnf 13133 . . . . . . . 8 (𝐵 ∈ ℝ → 𝐵 < +∞)
3 rexr 11291 . . . . . . . . 9 (𝐵 ∈ ℝ → 𝐵 ∈ ℝ*)
4 pnfxr 11299 . . . . . . . . 9 +∞ ∈ ℝ*
5 xrltnle 11312 . . . . . . . . 9 ((𝐵 ∈ ℝ* ∧ +∞ ∈ ℝ*) → (𝐵 < +∞ ↔ ¬ +∞ ≤ 𝐵))
63, 4, 5sylancl 585 . . . . . . . 8 (𝐵 ∈ ℝ → (𝐵 < +∞ ↔ ¬ +∞ ≤ 𝐵))
72, 6mpbid 231 . . . . . . 7 (𝐵 ∈ ℝ → ¬ +∞ ≤ 𝐵)
81, 7syl 17 . . . . . 6 (𝐵 ∈ ℕ0 → ¬ +∞ ≤ 𝐵)
9 hashinf 14327 . . . . . . . 8 ((𝐴𝑉 ∧ ¬ 𝐴 ∈ Fin) → (♯‘𝐴) = +∞)
109breq1d 5158 . . . . . . 7 ((𝐴𝑉 ∧ ¬ 𝐴 ∈ Fin) → ((♯‘𝐴) ≤ 𝐵 ↔ +∞ ≤ 𝐵))
1110notbid 318 . . . . . 6 ((𝐴𝑉 ∧ ¬ 𝐴 ∈ Fin) → (¬ (♯‘𝐴) ≤ 𝐵 ↔ ¬ +∞ ≤ 𝐵))
128, 11syl5ibrcom 246 . . . . 5 (𝐵 ∈ ℕ0 → ((𝐴𝑉 ∧ ¬ 𝐴 ∈ Fin) → ¬ (♯‘𝐴) ≤ 𝐵))
1312expdimp 452 . . . 4 ((𝐵 ∈ ℕ0𝐴𝑉) → (¬ 𝐴 ∈ Fin → ¬ (♯‘𝐴) ≤ 𝐵))
1413ancoms 458 . . 3 ((𝐴𝑉𝐵 ∈ ℕ0) → (¬ 𝐴 ∈ Fin → ¬ (♯‘𝐴) ≤ 𝐵))
1514con4d 115 . 2 ((𝐴𝑉𝐵 ∈ ℕ0) → ((♯‘𝐴) ≤ 𝐵𝐴 ∈ Fin))
16153impia 1115 1 ((𝐴𝑉𝐵 ∈ ℕ0 ∧ (♯‘𝐴) ≤ 𝐵) → 𝐴 ∈ Fin)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395  w3a 1085  wcel 2099   class class class wbr 5148  cfv 6548  Fincfn 8964  cr 11138  +∞cpnf 11276  *cxr 11278   < clt 11279  cle 11280  0cn0 12503  chash 14322
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-sep 5299  ax-nul 5306  ax-pow 5365  ax-pr 5429  ax-un 7740  ax-cnex 11195  ax-resscn 11196  ax-1cn 11197  ax-icn 11198  ax-addcl 11199  ax-addrcl 11200  ax-mulcl 11201  ax-mulrcl 11202  ax-mulcom 11203  ax-addass 11204  ax-mulass 11205  ax-distr 11206  ax-i2m1 11207  ax-1ne0 11208  ax-1rid 11209  ax-rnegex 11210  ax-rrecex 11211  ax-cnre 11212  ax-pre-lttri 11213  ax-pre-lttrn 11214  ax-pre-ltadd 11215  ax-pre-mulgt0 11216
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-reu 3374  df-rab 3430  df-v 3473  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4909  df-int 4950  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5576  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5633  df-we 5635  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-pred 6305  df-ord 6372  df-on 6373  df-lim 6374  df-suc 6375  df-iota 6500  df-fun 6550  df-fn 6551  df-f 6552  df-f1 6553  df-fo 6554  df-f1o 6555  df-fv 6556  df-riota 7376  df-ov 7423  df-oprab 7424  df-mpo 7425  df-om 7871  df-2nd 7994  df-frecs 8287  df-wrecs 8318  df-recs 8392  df-rdg 8431  df-1o 8487  df-er 8725  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-card 9963  df-pnf 11281  df-mnf 11282  df-xr 11283  df-ltxr 11284  df-le 11285  df-sub 11477  df-neg 11478  df-nn 12244  df-n0 12504  df-z 12590  df-uz 12854  df-hash 14323
This theorem is referenced by:  0ringnnzr  20462  fta1glem2  26116  fta1blem  26118  lgsqrlem4  27295  fusgredgfi  29151  aks6d1c2lem4  41598  idomsubgmo  42621  pgrple2abl  47429
  Copyright terms: Public domain W3C validator
OSZAR »