Step | Hyp | Ref
| Expression |
1 | | hashnexinj.4 |
. . 3
⊢ (𝜑 → 𝐹:𝐴⟶𝐵) |
2 | | hashnexinj.3 |
. . . . . . . . 9
⊢ (𝜑 → (♯‘𝐵) < (♯‘𝐴)) |
3 | | hashnexinj.2 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐵 ∈ Fin) |
4 | | hashcl 14345 |
. . . . . . . . . . . 12
⊢ (𝐵 ∈ Fin →
(♯‘𝐵) ∈
ℕ0) |
5 | 3, 4 | syl 17 |
. . . . . . . . . . 11
⊢ (𝜑 → (♯‘𝐵) ∈
ℕ0) |
6 | 5 | nn0red 12561 |
. . . . . . . . . 10
⊢ (𝜑 → (♯‘𝐵) ∈
ℝ) |
7 | | hashnexinj.1 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐴 ∈ Fin) |
8 | | hashcl 14345 |
. . . . . . . . . . . 12
⊢ (𝐴 ∈ Fin →
(♯‘𝐴) ∈
ℕ0) |
9 | 7, 8 | syl 17 |
. . . . . . . . . . 11
⊢ (𝜑 → (♯‘𝐴) ∈
ℕ0) |
10 | 9 | nn0red 12561 |
. . . . . . . . . 10
⊢ (𝜑 → (♯‘𝐴) ∈
ℝ) |
11 | 6, 10 | ltnled 11389 |
. . . . . . . . 9
⊢ (𝜑 → ((♯‘𝐵) < (♯‘𝐴) ↔ ¬
(♯‘𝐴) ≤
(♯‘𝐵))) |
12 | 2, 11 | mpbid 231 |
. . . . . . . 8
⊢ (𝜑 → ¬ (♯‘𝐴) ≤ (♯‘𝐵)) |
13 | | hashdom 14368 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) →
((♯‘𝐴) ≤
(♯‘𝐵) ↔
𝐴 ≼ 𝐵)) |
14 | 7, 3, 13 | syl2anc 582 |
. . . . . . . . . 10
⊢ (𝜑 → ((♯‘𝐴) ≤ (♯‘𝐵) ↔ 𝐴 ≼ 𝐵)) |
15 | 14 | notbid 317 |
. . . . . . . . 9
⊢ (𝜑 → (¬
(♯‘𝐴) ≤
(♯‘𝐵) ↔
¬ 𝐴 ≼ 𝐵)) |
16 | 15 | biimpd 228 |
. . . . . . . 8
⊢ (𝜑 → (¬
(♯‘𝐴) ≤
(♯‘𝐵) →
¬ 𝐴 ≼ 𝐵)) |
17 | 12, 16 | mpd 15 |
. . . . . . 7
⊢ (𝜑 → ¬ 𝐴 ≼ 𝐵) |
18 | | brdomg 8973 |
. . . . . . . . . 10
⊢ (𝐵 ∈ Fin → (𝐴 ≼ 𝐵 ↔ ∃𝑓 𝑓:𝐴–1-1→𝐵)) |
19 | 18 | notbid 317 |
. . . . . . . . 9
⊢ (𝐵 ∈ Fin → (¬ 𝐴 ≼ 𝐵 ↔ ¬ ∃𝑓 𝑓:𝐴–1-1→𝐵)) |
20 | 19 | biimpd 228 |
. . . . . . . 8
⊢ (𝐵 ∈ Fin → (¬ 𝐴 ≼ 𝐵 → ¬ ∃𝑓 𝑓:𝐴–1-1→𝐵)) |
21 | 3, 20 | syl 17 |
. . . . . . 7
⊢ (𝜑 → (¬ 𝐴 ≼ 𝐵 → ¬ ∃𝑓 𝑓:𝐴–1-1→𝐵)) |
22 | 17, 21 | mpd 15 |
. . . . . 6
⊢ (𝜑 → ¬ ∃𝑓 𝑓:𝐴–1-1→𝐵) |
23 | | alnex 1775 |
. . . . . 6
⊢
(∀𝑓 ¬
𝑓:𝐴–1-1→𝐵 ↔ ¬ ∃𝑓 𝑓:𝐴–1-1→𝐵) |
24 | 22, 23 | sylibr 233 |
. . . . 5
⊢ (𝜑 → ∀𝑓 ¬ 𝑓:𝐴–1-1→𝐵) |
25 | 3, 7, 1 | elmapdd 8856 |
. . . . . 6
⊢ (𝜑 → 𝐹 ∈ (𝐵 ↑m 𝐴)) |
26 | | f1eq1 6782 |
. . . . . . . 8
⊢ (𝑓 = 𝐹 → (𝑓:𝐴–1-1→𝐵 ↔ 𝐹:𝐴–1-1→𝐵)) |
27 | 26 | notbid 317 |
. . . . . . 7
⊢ (𝑓 = 𝐹 → (¬ 𝑓:𝐴–1-1→𝐵 ↔ ¬ 𝐹:𝐴–1-1→𝐵)) |
28 | 27 | spcgv 3576 |
. . . . . 6
⊢ (𝐹 ∈ (𝐵 ↑m 𝐴) → (∀𝑓 ¬ 𝑓:𝐴–1-1→𝐵 → ¬ 𝐹:𝐴–1-1→𝐵)) |
29 | 25, 28 | syl 17 |
. . . . 5
⊢ (𝜑 → (∀𝑓 ¬ 𝑓:𝐴–1-1→𝐵 → ¬ 𝐹:𝐴–1-1→𝐵)) |
30 | 24, 29 | mpd 15 |
. . . 4
⊢ (𝜑 → ¬ 𝐹:𝐴–1-1→𝐵) |
31 | | dff13 7260 |
. . . . . . . 8
⊢ (𝐹:𝐴–1-1→𝐵 ↔ (𝐹:𝐴⟶𝐵 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ((𝐹‘𝑥) = (𝐹‘𝑦) → 𝑥 = 𝑦))) |
32 | | iman 400 |
. . . . . . . . . . . 12
⊢ (((𝐹‘𝑥) = (𝐹‘𝑦) → 𝑥 = 𝑦) ↔ ¬ ((𝐹‘𝑥) = (𝐹‘𝑦) ∧ ¬ 𝑥 = 𝑦)) |
33 | | df-ne 2931 |
. . . . . . . . . . . . 13
⊢ (𝑥 ≠ 𝑦 ↔ ¬ 𝑥 = 𝑦) |
34 | 33 | anbi2i 621 |
. . . . . . . . . . . 12
⊢ (((𝐹‘𝑥) = (𝐹‘𝑦) ∧ 𝑥 ≠ 𝑦) ↔ ((𝐹‘𝑥) = (𝐹‘𝑦) ∧ ¬ 𝑥 = 𝑦)) |
35 | 32, 34 | xchbinxr 334 |
. . . . . . . . . . 11
⊢ (((𝐹‘𝑥) = (𝐹‘𝑦) → 𝑥 = 𝑦) ↔ ¬ ((𝐹‘𝑥) = (𝐹‘𝑦) ∧ 𝑥 ≠ 𝑦)) |
36 | 35 | 2ralbii 3118 |
. . . . . . . . . 10
⊢
(∀𝑥 ∈
𝐴 ∀𝑦 ∈ 𝐴 ((𝐹‘𝑥) = (𝐹‘𝑦) → 𝑥 = 𝑦) ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ ((𝐹‘𝑥) = (𝐹‘𝑦) ∧ 𝑥 ≠ 𝑦)) |
37 | | ralnex2 3123 |
. . . . . . . . . 10
⊢
(∀𝑥 ∈
𝐴 ∀𝑦 ∈ 𝐴 ¬ ((𝐹‘𝑥) = (𝐹‘𝑦) ∧ 𝑥 ≠ 𝑦) ↔ ¬ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐴 ((𝐹‘𝑥) = (𝐹‘𝑦) ∧ 𝑥 ≠ 𝑦)) |
38 | 36, 37 | bitri 274 |
. . . . . . . . 9
⊢
(∀𝑥 ∈
𝐴 ∀𝑦 ∈ 𝐴 ((𝐹‘𝑥) = (𝐹‘𝑦) → 𝑥 = 𝑦) ↔ ¬ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐴 ((𝐹‘𝑥) = (𝐹‘𝑦) ∧ 𝑥 ≠ 𝑦)) |
39 | 38 | anbi2i 621 |
. . . . . . . 8
⊢ ((𝐹:𝐴⟶𝐵 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ((𝐹‘𝑥) = (𝐹‘𝑦) → 𝑥 = 𝑦)) ↔ (𝐹:𝐴⟶𝐵 ∧ ¬ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐴 ((𝐹‘𝑥) = (𝐹‘𝑦) ∧ 𝑥 ≠ 𝑦))) |
40 | 31, 39 | bitri 274 |
. . . . . . 7
⊢ (𝐹:𝐴–1-1→𝐵 ↔ (𝐹:𝐴⟶𝐵 ∧ ¬ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐴 ((𝐹‘𝑥) = (𝐹‘𝑦) ∧ 𝑥 ≠ 𝑦))) |
41 | 40 | a1i 11 |
. . . . . 6
⊢ (𝜑 → (𝐹:𝐴–1-1→𝐵 ↔ (𝐹:𝐴⟶𝐵 ∧ ¬ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐴 ((𝐹‘𝑥) = (𝐹‘𝑦) ∧ 𝑥 ≠ 𝑦)))) |
42 | 41 | notbid 317 |
. . . . 5
⊢ (𝜑 → (¬ 𝐹:𝐴–1-1→𝐵 ↔ ¬ (𝐹:𝐴⟶𝐵 ∧ ¬ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐴 ((𝐹‘𝑥) = (𝐹‘𝑦) ∧ 𝑥 ≠ 𝑦)))) |
43 | 42 | biimpd 228 |
. . . 4
⊢ (𝜑 → (¬ 𝐹:𝐴–1-1→𝐵 → ¬ (𝐹:𝐴⟶𝐵 ∧ ¬ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐴 ((𝐹‘𝑥) = (𝐹‘𝑦) ∧ 𝑥 ≠ 𝑦)))) |
44 | 30, 43 | mpd 15 |
. . 3
⊢ (𝜑 → ¬ (𝐹:𝐴⟶𝐵 ∧ ¬ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐴 ((𝐹‘𝑥) = (𝐹‘𝑦) ∧ 𝑥 ≠ 𝑦))) |
45 | 1, 44 | mpnanrd 408 |
. 2
⊢ (𝜑 → ¬ ¬ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐴 ((𝐹‘𝑥) = (𝐹‘𝑦) ∧ 𝑥 ≠ 𝑦)) |
46 | 45 | notnotrd 133 |
1
⊢ (𝜑 → ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐴 ((𝐹‘𝑥) = (𝐹‘𝑦) ∧ 𝑥 ≠ 𝑦)) |