HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  hoaddassi Structured version   Visualization version   GIF version

Theorem hoaddassi 31658
Description: Associativity of sum of Hilbert space operators. (Contributed by NM, 26-Nov-2000.) (New usage is discouraged.)
Hypotheses
Ref Expression
hods.1 𝑅: ℋ⟶ ℋ
hods.2 𝑆: ℋ⟶ ℋ
hods.3 𝑇: ℋ⟶ ℋ
Assertion
Ref Expression
hoaddassi ((𝑅 +op 𝑆) +op 𝑇) = (𝑅 +op (𝑆 +op 𝑇))

Proof of Theorem hoaddassi
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 hods.1 . . . . . 6 𝑅: ℋ⟶ ℋ
2 hods.2 . . . . . 6 𝑆: ℋ⟶ ℋ
3 hosval 31622 . . . . . 6 ((𝑅: ℋ⟶ ℋ ∧ 𝑆: ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ) → ((𝑅 +op 𝑆)‘𝑥) = ((𝑅𝑥) + (𝑆𝑥)))
41, 2, 3mp3an12 1447 . . . . 5 (𝑥 ∈ ℋ → ((𝑅 +op 𝑆)‘𝑥) = ((𝑅𝑥) + (𝑆𝑥)))
54oveq1d 7434 . . . 4 (𝑥 ∈ ℋ → (((𝑅 +op 𝑆)‘𝑥) + (𝑇𝑥)) = (((𝑅𝑥) + (𝑆𝑥)) + (𝑇𝑥)))
61, 2hoaddcli 31650 . . . . 5 (𝑅 +op 𝑆): ℋ⟶ ℋ
7 hods.3 . . . . 5 𝑇: ℋ⟶ ℋ
8 hosval 31622 . . . . 5 (((𝑅 +op 𝑆): ℋ⟶ ℋ ∧ 𝑇: ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ) → (((𝑅 +op 𝑆) +op 𝑇)‘𝑥) = (((𝑅 +op 𝑆)‘𝑥) + (𝑇𝑥)))
96, 7, 8mp3an12 1447 . . . 4 (𝑥 ∈ ℋ → (((𝑅 +op 𝑆) +op 𝑇)‘𝑥) = (((𝑅 +op 𝑆)‘𝑥) + (𝑇𝑥)))
10 hosval 31622 . . . . . . 7 ((𝑆: ℋ⟶ ℋ ∧ 𝑇: ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ) → ((𝑆 +op 𝑇)‘𝑥) = ((𝑆𝑥) + (𝑇𝑥)))
112, 7, 10mp3an12 1447 . . . . . 6 (𝑥 ∈ ℋ → ((𝑆 +op 𝑇)‘𝑥) = ((𝑆𝑥) + (𝑇𝑥)))
1211oveq2d 7435 . . . . 5 (𝑥 ∈ ℋ → ((𝑅𝑥) + ((𝑆 +op 𝑇)‘𝑥)) = ((𝑅𝑥) + ((𝑆𝑥) + (𝑇𝑥))))
132, 7hoaddcli 31650 . . . . . 6 (𝑆 +op 𝑇): ℋ⟶ ℋ
14 hosval 31622 . . . . . 6 ((𝑅: ℋ⟶ ℋ ∧ (𝑆 +op 𝑇): ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ) → ((𝑅 +op (𝑆 +op 𝑇))‘𝑥) = ((𝑅𝑥) + ((𝑆 +op 𝑇)‘𝑥)))
151, 13, 14mp3an12 1447 . . . . 5 (𝑥 ∈ ℋ → ((𝑅 +op (𝑆 +op 𝑇))‘𝑥) = ((𝑅𝑥) + ((𝑆 +op 𝑇)‘𝑥)))
161ffvelcdmi 7092 . . . . . 6 (𝑥 ∈ ℋ → (𝑅𝑥) ∈ ℋ)
172ffvelcdmi 7092 . . . . . 6 (𝑥 ∈ ℋ → (𝑆𝑥) ∈ ℋ)
187ffvelcdmi 7092 . . . . . 6 (𝑥 ∈ ℋ → (𝑇𝑥) ∈ ℋ)
19 ax-hvass 30884 . . . . . 6 (((𝑅𝑥) ∈ ℋ ∧ (𝑆𝑥) ∈ ℋ ∧ (𝑇𝑥) ∈ ℋ) → (((𝑅𝑥) + (𝑆𝑥)) + (𝑇𝑥)) = ((𝑅𝑥) + ((𝑆𝑥) + (𝑇𝑥))))
2016, 17, 18, 19syl3anc 1368 . . . . 5 (𝑥 ∈ ℋ → (((𝑅𝑥) + (𝑆𝑥)) + (𝑇𝑥)) = ((𝑅𝑥) + ((𝑆𝑥) + (𝑇𝑥))))
2112, 15, 203eqtr4d 2775 . . . 4 (𝑥 ∈ ℋ → ((𝑅 +op (𝑆 +op 𝑇))‘𝑥) = (((𝑅𝑥) + (𝑆𝑥)) + (𝑇𝑥)))
225, 9, 213eqtr4d 2775 . . 3 (𝑥 ∈ ℋ → (((𝑅 +op 𝑆) +op 𝑇)‘𝑥) = ((𝑅 +op (𝑆 +op 𝑇))‘𝑥))
2322rgen 3052 . 2 𝑥 ∈ ℋ (((𝑅 +op 𝑆) +op 𝑇)‘𝑥) = ((𝑅 +op (𝑆 +op 𝑇))‘𝑥)
246, 7hoaddcli 31650 . . 3 ((𝑅 +op 𝑆) +op 𝑇): ℋ⟶ ℋ
251, 13hoaddcli 31650 . . 3 (𝑅 +op (𝑆 +op 𝑇)): ℋ⟶ ℋ
2624, 25hoeqi 31643 . 2 (∀𝑥 ∈ ℋ (((𝑅 +op 𝑆) +op 𝑇)‘𝑥) = ((𝑅 +op (𝑆 +op 𝑇))‘𝑥) ↔ ((𝑅 +op 𝑆) +op 𝑇) = (𝑅 +op (𝑆 +op 𝑇)))
2723, 26mpbi 229 1 ((𝑅 +op 𝑆) +op 𝑇) = (𝑅 +op (𝑆 +op 𝑇))
Colors of variables: wff setvar class
Syntax hints:   = wceq 1533  wcel 2098  wral 3050  wf 6545  cfv 6549  (class class class)co 7419  chba 30801   + cva 30802   +op chos 30820
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5365  ax-pr 5429  ax-un 7741  ax-hilex 30881  ax-hfvadd 30882  ax-hvass 30884
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2930  df-ral 3051  df-rex 3060  df-reu 3364  df-rab 3419  df-v 3463  df-sbc 3774  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-nul 4323  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4910  df-iun 4999  df-br 5150  df-opab 5212  df-mpt 5233  df-id 5576  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-iota 6501  df-fun 6551  df-fn 6552  df-f 6553  df-f1 6554  df-fo 6555  df-f1o 6556  df-fv 6557  df-ov 7422  df-oprab 7423  df-mpo 7424  df-map 8847  df-hosum 31612
This theorem is referenced by:  hoadd12i  31659  hoadd32i  31660  hoaddass  31664  hosubeq0i  31708
  Copyright terms: Public domain W3C validator
OSZAR »