HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  hvmul0or Structured version   Visualization version   GIF version

Theorem hvmul0or 30855
Description: If a scalar product is zero, one of its factors must be zero. (Contributed by NM, 19-May-2005.) (New usage is discouraged.)
Assertion
Ref Expression
hvmul0or ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ) → ((𝐴 · 𝐵) = 0 ↔ (𝐴 = 0 ∨ 𝐵 = 0)))

Proof of Theorem hvmul0or
StepHypRef Expression
1 df-ne 2938 . . . . 5 (𝐴 ≠ 0 ↔ ¬ 𝐴 = 0)
2 oveq2 7434 . . . . . . . 8 ((𝐴 · 𝐵) = 0 → ((1 / 𝐴) · (𝐴 · 𝐵)) = ((1 / 𝐴) · 0))
32ad2antlr 725 . . . . . . 7 ((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ) ∧ (𝐴 · 𝐵) = 0) ∧ 𝐴 ≠ 0) → ((1 / 𝐴) · (𝐴 · 𝐵)) = ((1 / 𝐴) · 0))
4 recid2 11925 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → ((1 / 𝐴) · 𝐴) = 1)
54oveq1d 7441 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (((1 / 𝐴) · 𝐴) · 𝐵) = (1 · 𝐵))
65adantlr 713 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ) ∧ 𝐴 ≠ 0) → (((1 / 𝐴) · 𝐴) · 𝐵) = (1 · 𝐵))
7 reccl 11917 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (1 / 𝐴) ∈ ℂ)
87adantlr 713 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ) ∧ 𝐴 ≠ 0) → (1 / 𝐴) ∈ ℂ)
9 simpll 765 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ) ∧ 𝐴 ≠ 0) → 𝐴 ∈ ℂ)
10 simplr 767 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ) ∧ 𝐴 ≠ 0) → 𝐵 ∈ ℋ)
11 ax-hvmulass 30837 . . . . . . . . . 10 (((1 / 𝐴) ∈ ℂ ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ) → (((1 / 𝐴) · 𝐴) · 𝐵) = ((1 / 𝐴) · (𝐴 · 𝐵)))
128, 9, 10, 11syl3anc 1368 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ) ∧ 𝐴 ≠ 0) → (((1 / 𝐴) · 𝐴) · 𝐵) = ((1 / 𝐴) · (𝐴 · 𝐵)))
13 ax-hvmulid 30836 . . . . . . . . . 10 (𝐵 ∈ ℋ → (1 · 𝐵) = 𝐵)
1413ad2antlr 725 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ) ∧ 𝐴 ≠ 0) → (1 · 𝐵) = 𝐵)
156, 12, 143eqtr3d 2776 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ) ∧ 𝐴 ≠ 0) → ((1 / 𝐴) · (𝐴 · 𝐵)) = 𝐵)
1615adantlr 713 . . . . . . 7 ((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ) ∧ (𝐴 · 𝐵) = 0) ∧ 𝐴 ≠ 0) → ((1 / 𝐴) · (𝐴 · 𝐵)) = 𝐵)
17 hvmul0 30854 . . . . . . . . . 10 ((1 / 𝐴) ∈ ℂ → ((1 / 𝐴) · 0) = 0)
187, 17syl 17 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → ((1 / 𝐴) · 0) = 0)
1918adantlr 713 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ) ∧ 𝐴 ≠ 0) → ((1 / 𝐴) · 0) = 0)
2019adantlr 713 . . . . . . 7 ((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ) ∧ (𝐴 · 𝐵) = 0) ∧ 𝐴 ≠ 0) → ((1 / 𝐴) · 0) = 0)
213, 16, 203eqtr3d 2776 . . . . . 6 ((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ) ∧ (𝐴 · 𝐵) = 0) ∧ 𝐴 ≠ 0) → 𝐵 = 0)
2221ex 411 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ) ∧ (𝐴 · 𝐵) = 0) → (𝐴 ≠ 0 → 𝐵 = 0))
231, 22biimtrrid 242 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ) ∧ (𝐴 · 𝐵) = 0) → (¬ 𝐴 = 0 → 𝐵 = 0))
2423orrd 861 . . 3 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ) ∧ (𝐴 · 𝐵) = 0) → (𝐴 = 0 ∨ 𝐵 = 0))
2524ex 411 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ) → ((𝐴 · 𝐵) = 0 → (𝐴 = 0 ∨ 𝐵 = 0)))
26 ax-hvmul0 30840 . . . . 5 (𝐵 ∈ ℋ → (0 · 𝐵) = 0)
27 oveq1 7433 . . . . . 6 (𝐴 = 0 → (𝐴 · 𝐵) = (0 · 𝐵))
2827eqeq1d 2730 . . . . 5 (𝐴 = 0 → ((𝐴 · 𝐵) = 0 ↔ (0 · 𝐵) = 0))
2926, 28syl5ibrcom 246 . . . 4 (𝐵 ∈ ℋ → (𝐴 = 0 → (𝐴 · 𝐵) = 0))
3029adantl 480 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ) → (𝐴 = 0 → (𝐴 · 𝐵) = 0))
31 hvmul0 30854 . . . . 5 (𝐴 ∈ ℂ → (𝐴 · 0) = 0)
32 oveq2 7434 . . . . . 6 (𝐵 = 0 → (𝐴 · 𝐵) = (𝐴 · 0))
3332eqeq1d 2730 . . . . 5 (𝐵 = 0 → ((𝐴 · 𝐵) = 0 ↔ (𝐴 · 0) = 0))
3431, 33syl5ibrcom 246 . . . 4 (𝐴 ∈ ℂ → (𝐵 = 0 → (𝐴 · 𝐵) = 0))
3534adantr 479 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ) → (𝐵 = 0 → (𝐴 · 𝐵) = 0))
3630, 35jaod 857 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ) → ((𝐴 = 0 ∨ 𝐵 = 0) → (𝐴 · 𝐵) = 0))
3725, 36impbid 211 1 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ) → ((𝐴 · 𝐵) = 0 ↔ (𝐴 = 0 ∨ 𝐵 = 0)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 394  wo 845   = wceq 1533  wcel 2098  wne 2937  (class class class)co 7426  cc 11144  0cc0 11146  1c1 11147   · cmul 11151   / cdiv 11909  chba 30749   · csm 30751  0c0v 30754
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2699  ax-sep 5303  ax-nul 5310  ax-pow 5369  ax-pr 5433  ax-un 7746  ax-resscn 11203  ax-1cn 11204  ax-icn 11205  ax-addcl 11206  ax-addrcl 11207  ax-mulcl 11208  ax-mulrcl 11209  ax-mulcom 11210  ax-addass 11211  ax-mulass 11212  ax-distr 11213  ax-i2m1 11214  ax-1ne0 11215  ax-1rid 11216  ax-rnegex 11217  ax-rrecex 11218  ax-cnre 11219  ax-pre-lttri 11220  ax-pre-lttrn 11221  ax-pre-ltadd 11222  ax-pre-mulgt0 11223  ax-hv0cl 30833  ax-hvmulid 30836  ax-hvmulass 30837  ax-hvmul0 30840
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2529  df-eu 2558  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3374  df-reu 3375  df-rab 3431  df-v 3475  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4327  df-if 4533  df-pw 4608  df-sn 4633  df-pr 4635  df-op 4639  df-uni 4913  df-br 5153  df-opab 5215  df-mpt 5236  df-id 5580  df-po 5594  df-so 5595  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-iota 6505  df-fun 6555  df-fn 6556  df-f 6557  df-f1 6558  df-fo 6559  df-f1o 6560  df-fv 6561  df-riota 7382  df-ov 7429  df-oprab 7430  df-mpo 7431  df-er 8731  df-en 8971  df-dom 8972  df-sdom 8973  df-pnf 11288  df-mnf 11289  df-xr 11290  df-ltxr 11291  df-le 11292  df-sub 11484  df-neg 11485  df-div 11910
This theorem is referenced by:  hvmulcan  30902  hvmulcan2  30903  nmlnop0iALT  31825
  Copyright terms: Public domain W3C validator
OSZAR »