![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > infrelb | Structured version Visualization version GIF version |
Description: If a nonempty set of real numbers has a lower bound, its infimum is less than or equal to any of its elements. (Contributed by Jeff Hankins, 15-Sep-2013.) (Revised by AV, 4-Sep-2020.) |
Ref | Expression |
---|---|
infrelb | ⊢ ((𝐵 ⊆ ℝ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐵 𝑥 ≤ 𝑦 ∧ 𝐴 ∈ 𝐵) → inf(𝐵, ℝ, < ) ≤ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp1 1134 | . . 3 ⊢ ((𝐵 ⊆ ℝ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐵 𝑥 ≤ 𝑦 ∧ 𝐴 ∈ 𝐵) → 𝐵 ⊆ ℝ) | |
2 | ne0i 4335 | . . . 4 ⊢ (𝐴 ∈ 𝐵 → 𝐵 ≠ ∅) | |
3 | 2 | 3ad2ant3 1133 | . . 3 ⊢ ((𝐵 ⊆ ℝ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐵 𝑥 ≤ 𝑦 ∧ 𝐴 ∈ 𝐵) → 𝐵 ≠ ∅) |
4 | simp2 1135 | . . 3 ⊢ ((𝐵 ⊆ ℝ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐵 𝑥 ≤ 𝑦 ∧ 𝐴 ∈ 𝐵) → ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐵 𝑥 ≤ 𝑦) | |
5 | infrecl 12226 | . . 3 ⊢ ((𝐵 ⊆ ℝ ∧ 𝐵 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐵 𝑥 ≤ 𝑦) → inf(𝐵, ℝ, < ) ∈ ℝ) | |
6 | 1, 3, 4, 5 | syl3anc 1369 | . 2 ⊢ ((𝐵 ⊆ ℝ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐵 𝑥 ≤ 𝑦 ∧ 𝐴 ∈ 𝐵) → inf(𝐵, ℝ, < ) ∈ ℝ) |
7 | ssel2 3975 | . . 3 ⊢ ((𝐵 ⊆ ℝ ∧ 𝐴 ∈ 𝐵) → 𝐴 ∈ ℝ) | |
8 | 7 | 3adant2 1129 | . 2 ⊢ ((𝐵 ⊆ ℝ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐵 𝑥 ≤ 𝑦 ∧ 𝐴 ∈ 𝐵) → 𝐴 ∈ ℝ) |
9 | ltso 11324 | . . . . . . 7 ⊢ < Or ℝ | |
10 | 9 | a1i 11 | . . . . . 6 ⊢ (((𝐵 ⊆ ℝ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐵 𝑥 ≤ 𝑦) ∧ 𝐴 ∈ 𝐵) → < Or ℝ) |
11 | simpll 766 | . . . . . . 7 ⊢ (((𝐵 ⊆ ℝ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐵 𝑥 ≤ 𝑦) ∧ 𝐴 ∈ 𝐵) → 𝐵 ⊆ ℝ) | |
12 | 2 | adantl 481 | . . . . . . 7 ⊢ (((𝐵 ⊆ ℝ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐵 𝑥 ≤ 𝑦) ∧ 𝐴 ∈ 𝐵) → 𝐵 ≠ ∅) |
13 | simplr 768 | . . . . . . 7 ⊢ (((𝐵 ⊆ ℝ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐵 𝑥 ≤ 𝑦) ∧ 𝐴 ∈ 𝐵) → ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐵 𝑥 ≤ 𝑦) | |
14 | infm3 12203 | . . . . . . 7 ⊢ ((𝐵 ⊆ ℝ ∧ 𝐵 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐵 𝑥 ≤ 𝑦) → ∃𝑥 ∈ ℝ (∀𝑦 ∈ 𝐵 ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 → ∃𝑧 ∈ 𝐵 𝑧 < 𝑦))) | |
15 | 11, 12, 13, 14 | syl3anc 1369 | . . . . . 6 ⊢ (((𝐵 ⊆ ℝ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐵 𝑥 ≤ 𝑦) ∧ 𝐴 ∈ 𝐵) → ∃𝑥 ∈ ℝ (∀𝑦 ∈ 𝐵 ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 → ∃𝑧 ∈ 𝐵 𝑧 < 𝑦))) |
16 | 10, 15 | inflb 9512 | . . . . 5 ⊢ (((𝐵 ⊆ ℝ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐵 𝑥 ≤ 𝑦) ∧ 𝐴 ∈ 𝐵) → (𝐴 ∈ 𝐵 → ¬ 𝐴 < inf(𝐵, ℝ, < ))) |
17 | 16 | expcom 413 | . . . 4 ⊢ (𝐴 ∈ 𝐵 → ((𝐵 ⊆ ℝ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐵 𝑥 ≤ 𝑦) → (𝐴 ∈ 𝐵 → ¬ 𝐴 < inf(𝐵, ℝ, < )))) |
18 | 17 | pm2.43b 55 | . . 3 ⊢ ((𝐵 ⊆ ℝ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐵 𝑥 ≤ 𝑦) → (𝐴 ∈ 𝐵 → ¬ 𝐴 < inf(𝐵, ℝ, < ))) |
19 | 18 | 3impia 1115 | . 2 ⊢ ((𝐵 ⊆ ℝ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐵 𝑥 ≤ 𝑦 ∧ 𝐴 ∈ 𝐵) → ¬ 𝐴 < inf(𝐵, ℝ, < )) |
20 | 6, 8, 19 | nltled 11394 | 1 ⊢ ((𝐵 ⊆ ℝ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐵 𝑥 ≤ 𝑦 ∧ 𝐴 ∈ 𝐵) → inf(𝐵, ℝ, < ) ≤ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∧ w3a 1085 ∈ wcel 2099 ≠ wne 2937 ∀wral 3058 ∃wrex 3067 ⊆ wss 3947 ∅c0 4323 class class class wbr 5148 Or wor 5589 infcinf 9464 ℝcr 11137 < clt 11278 ≤ cle 11279 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-sep 5299 ax-nul 5306 ax-pow 5365 ax-pr 5429 ax-un 7740 ax-resscn 11195 ax-1cn 11196 ax-icn 11197 ax-addcl 11198 ax-addrcl 11199 ax-mulcl 11200 ax-mulrcl 11201 ax-mulcom 11202 ax-addass 11203 ax-mulass 11204 ax-distr 11205 ax-i2m1 11206 ax-1ne0 11207 ax-1rid 11208 ax-rnegex 11209 ax-rrecex 11210 ax-cnre 11211 ax-pre-lttri 11212 ax-pre-lttrn 11213 ax-pre-ltadd 11214 ax-pre-mulgt0 11215 ax-pre-sup 11216 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-rmo 3373 df-reu 3374 df-rab 3430 df-v 3473 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4909 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5576 df-po 5590 df-so 5591 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-iota 6500 df-fun 6550 df-fn 6551 df-f 6552 df-f1 6553 df-fo 6554 df-f1o 6555 df-fv 6556 df-riota 7376 df-ov 7423 df-oprab 7424 df-mpo 7425 df-er 8724 df-en 8964 df-dom 8965 df-sdom 8966 df-sup 9465 df-inf 9466 df-pnf 11280 df-mnf 11281 df-xr 11282 df-ltxr 11283 df-le 11284 df-sub 11476 df-neg 11477 |
This theorem is referenced by: infrefilb 12230 minveclem2 25353 minveclem4 25359 aalioulem2 26267 pilem2 26388 pilem3 26389 pntlem3 27541 minvecolem2 30684 minvecolem4 30689 taupilem2 36801 ptrecube 37093 heicant 37128 hashscontpow1 41592 pellfundlb 42304 climinf 44994 fourierdlem42 45537 |
Copyright terms: Public domain | W3C validator |