Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iooabslt Structured version   Visualization version   GIF version

Theorem iooabslt 44884
Description: An upper bound for the distance from the center of an open interval. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
iooabslt.1 (𝜑𝐴 ∈ ℝ)
iooabslt.2 (𝜑𝐵 ∈ ℝ)
iooabslt.3 (𝜑𝐶 ∈ ((𝐴𝐵)(,)(𝐴 + 𝐵)))
Assertion
Ref Expression
iooabslt (𝜑 → (abs‘(𝐴𝐶)) < 𝐵)

Proof of Theorem iooabslt
StepHypRef Expression
1 iooabslt.1 . . . 4 (𝜑𝐴 ∈ ℝ)
21recnd 11273 . . 3 (𝜑𝐴 ∈ ℂ)
3 iooabslt.3 . . . . 5 (𝜑𝐶 ∈ ((𝐴𝐵)(,)(𝐴 + 𝐵)))
4 elioore 13387 . . . . 5 (𝐶 ∈ ((𝐴𝐵)(,)(𝐴 + 𝐵)) → 𝐶 ∈ ℝ)
53, 4syl 17 . . . 4 (𝜑𝐶 ∈ ℝ)
65recnd 11273 . . 3 (𝜑𝐶 ∈ ℂ)
7 eqid 2728 . . . 4 (abs ∘ − ) = (abs ∘ − )
87cnmetdval 24700 . . 3 ((𝐴 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐴(abs ∘ − )𝐶) = (abs‘(𝐴𝐶)))
92, 6, 8syl2anc 583 . 2 (𝜑 → (𝐴(abs ∘ − )𝐶) = (abs‘(𝐴𝐶)))
10 iooabslt.2 . . . . . . . . 9 (𝜑𝐵 ∈ ℝ)
11 eqid 2728 . . . . . . . . . 10 ((abs ∘ − ) ↾ (ℝ × ℝ)) = ((abs ∘ − ) ↾ (ℝ × ℝ))
1211bl2ioo 24721 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝐵) = ((𝐴𝐵)(,)(𝐴 + 𝐵)))
131, 10, 12syl2anc 583 . . . . . . . 8 (𝜑 → (𝐴(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝐵) = ((𝐴𝐵)(,)(𝐴 + 𝐵)))
143, 13eleqtrrd 2832 . . . . . . 7 (𝜑𝐶 ∈ (𝐴(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝐵))
15 cnxmet 24702 . . . . . . . . 9 (abs ∘ − ) ∈ (∞Met‘ℂ)
1615a1i 11 . . . . . . . 8 (𝜑 → (abs ∘ − ) ∈ (∞Met‘ℂ))
172, 1elind 4194 . . . . . . . 8 (𝜑𝐴 ∈ (ℂ ∩ ℝ))
1810rexrd 11295 . . . . . . . 8 (𝜑𝐵 ∈ ℝ*)
1911blres 24350 . . . . . . . 8 (((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ 𝐴 ∈ (ℂ ∩ ℝ) ∧ 𝐵 ∈ ℝ*) → (𝐴(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝐵) = ((𝐴(ball‘(abs ∘ − ))𝐵) ∩ ℝ))
2016, 17, 18, 19syl3anc 1369 . . . . . . 7 (𝜑 → (𝐴(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝐵) = ((𝐴(ball‘(abs ∘ − ))𝐵) ∩ ℝ))
2114, 20eleqtrd 2831 . . . . . 6 (𝜑𝐶 ∈ ((𝐴(ball‘(abs ∘ − ))𝐵) ∩ ℝ))
22 elin 3963 . . . . . 6 (𝐶 ∈ ((𝐴(ball‘(abs ∘ − ))𝐵) ∩ ℝ) ↔ (𝐶 ∈ (𝐴(ball‘(abs ∘ − ))𝐵) ∧ 𝐶 ∈ ℝ))
2321, 22sylib 217 . . . . 5 (𝜑 → (𝐶 ∈ (𝐴(ball‘(abs ∘ − ))𝐵) ∧ 𝐶 ∈ ℝ))
2423simpld 494 . . . 4 (𝜑𝐶 ∈ (𝐴(ball‘(abs ∘ − ))𝐵))
25 elbl 24307 . . . . 5 (((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ*) → (𝐶 ∈ (𝐴(ball‘(abs ∘ − ))𝐵) ↔ (𝐶 ∈ ℂ ∧ (𝐴(abs ∘ − )𝐶) < 𝐵)))
2616, 2, 18, 25syl3anc 1369 . . . 4 (𝜑 → (𝐶 ∈ (𝐴(ball‘(abs ∘ − ))𝐵) ↔ (𝐶 ∈ ℂ ∧ (𝐴(abs ∘ − )𝐶) < 𝐵)))
2724, 26mpbid 231 . . 3 (𝜑 → (𝐶 ∈ ℂ ∧ (𝐴(abs ∘ − )𝐶) < 𝐵))
2827simprd 495 . 2 (𝜑 → (𝐴(abs ∘ − )𝐶) < 𝐵)
299, 28eqbrtrrd 5172 1 (𝜑 → (abs‘(𝐴𝐶)) < 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1534  wcel 2099  cin 3946   class class class wbr 5148   × cxp 5676  cres 5680  ccom 5682  cfv 6548  (class class class)co 7420  cc 11137  cr 11138   + caddc 11142  *cxr 11278   < clt 11279  cmin 11475  (,)cioo 13357  abscabs 15214  ∞Metcxmet 21264  ballcbl 21266
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-sep 5299  ax-nul 5306  ax-pow 5365  ax-pr 5429  ax-un 7740  ax-cnex 11195  ax-resscn 11196  ax-1cn 11197  ax-icn 11198  ax-addcl 11199  ax-addrcl 11200  ax-mulcl 11201  ax-mulrcl 11202  ax-mulcom 11203  ax-addass 11204  ax-mulass 11205  ax-distr 11206  ax-i2m1 11207  ax-1ne0 11208  ax-1rid 11209  ax-rnegex 11210  ax-rrecex 11211  ax-cnre 11212  ax-pre-lttri 11213  ax-pre-lttrn 11214  ax-pre-ltadd 11215  ax-pre-mulgt0 11216  ax-pre-sup 11217
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3373  df-reu 3374  df-rab 3430  df-v 3473  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4909  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5576  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5633  df-we 5635  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-pred 6305  df-ord 6372  df-on 6373  df-lim 6374  df-suc 6375  df-iota 6500  df-fun 6550  df-fn 6551  df-f 6552  df-f1 6553  df-fo 6554  df-f1o 6555  df-fv 6556  df-riota 7376  df-ov 7423  df-oprab 7424  df-mpo 7425  df-om 7871  df-1st 7993  df-2nd 7994  df-frecs 8287  df-wrecs 8318  df-recs 8392  df-rdg 8431  df-er 8725  df-map 8847  df-en 8965  df-dom 8966  df-sdom 8967  df-sup 9466  df-pnf 11281  df-mnf 11282  df-xr 11283  df-ltxr 11284  df-le 11285  df-sub 11477  df-neg 11478  df-div 11903  df-nn 12244  df-2 12306  df-3 12307  df-n0 12504  df-z 12590  df-uz 12854  df-rp 13008  df-xadd 13126  df-ioo 13361  df-seq 14000  df-exp 14060  df-cj 15079  df-re 15080  df-im 15081  df-sqrt 15215  df-abs 15216  df-psmet 21271  df-xmet 21272  df-met 21273  df-bl 21274
This theorem is referenced by:  lptre2pt  45028
  Copyright terms: Public domain W3C validator
OSZAR »