![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > ioontr | Structured version Visualization version GIF version |
Description: The interior of an interval in the standard topology on ℝ is the open interval itself. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
Ref | Expression |
---|---|
ioontr | ⊢ ((int‘(topGen‘ran (,)))‘(𝐴(,)𝐵)) = (𝐴(,)𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iooretop 24695 | . 2 ⊢ (𝐴(,)𝐵) ∈ (topGen‘ran (,)) | |
2 | retop 24691 | . . 3 ⊢ (topGen‘ran (,)) ∈ Top | |
3 | ioossre 13418 | . . 3 ⊢ (𝐴(,)𝐵) ⊆ ℝ | |
4 | uniretop 24692 | . . . 4 ⊢ ℝ = ∪ (topGen‘ran (,)) | |
5 | 4 | isopn3 22983 | . . 3 ⊢ (((topGen‘ran (,)) ∈ Top ∧ (𝐴(,)𝐵) ⊆ ℝ) → ((𝐴(,)𝐵) ∈ (topGen‘ran (,)) ↔ ((int‘(topGen‘ran (,)))‘(𝐴(,)𝐵)) = (𝐴(,)𝐵))) |
6 | 2, 3, 5 | mp2an 691 | . 2 ⊢ ((𝐴(,)𝐵) ∈ (topGen‘ran (,)) ↔ ((int‘(topGen‘ran (,)))‘(𝐴(,)𝐵)) = (𝐴(,)𝐵)) |
7 | 1, 6 | mpbi 229 | 1 ⊢ ((int‘(topGen‘ran (,)))‘(𝐴(,)𝐵)) = (𝐴(,)𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 = wceq 1534 ∈ wcel 2099 ⊆ wss 3947 ran crn 5679 ‘cfv 6548 (class class class)co 7420 ℝcr 11138 (,)cioo 13357 topGenctg 17419 Topctop 22808 intcnt 22934 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5365 ax-pr 5429 ax-un 7740 ax-cnex 11195 ax-resscn 11196 ax-1cn 11197 ax-icn 11198 ax-addcl 11199 ax-addrcl 11200 ax-mulcl 11201 ax-mulrcl 11202 ax-mulcom 11203 ax-addass 11204 ax-mulass 11205 ax-distr 11206 ax-i2m1 11207 ax-1ne0 11208 ax-1rid 11209 ax-rnegex 11210 ax-rrecex 11211 ax-cnre 11212 ax-pre-lttri 11213 ax-pre-lttrn 11214 ax-pre-ltadd 11215 ax-pre-mulgt0 11216 ax-pre-sup 11217 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-rmo 3373 df-reu 3374 df-rab 3430 df-v 3473 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4909 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5576 df-eprel 5582 df-po 5590 df-so 5591 df-fr 5633 df-we 5635 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-pred 6305 df-ord 6372 df-on 6373 df-lim 6374 df-suc 6375 df-iota 6500 df-fun 6550 df-fn 6551 df-f 6552 df-f1 6553 df-fo 6554 df-f1o 6555 df-fv 6556 df-riota 7376 df-ov 7423 df-oprab 7424 df-mpo 7425 df-om 7871 df-1st 7993 df-2nd 7994 df-frecs 8287 df-wrecs 8318 df-recs 8392 df-rdg 8431 df-er 8725 df-en 8965 df-dom 8966 df-sdom 8967 df-sup 9466 df-inf 9467 df-pnf 11281 df-mnf 11282 df-xr 11283 df-ltxr 11284 df-le 11285 df-sub 11477 df-neg 11478 df-div 11903 df-nn 12244 df-n0 12504 df-z 12590 df-uz 12854 df-q 12964 df-ioo 13361 df-topgen 17425 df-top 22809 df-bases 22862 df-ntr 22937 |
This theorem is referenced by: ioonct 44922 cncfiooicclem1 45281 dvresioo 45309 fourierdlem57 45551 fourierdlem72 45566 fourierdlem74 45568 fourierdlem75 45569 fourierdlem80 45574 fourierdlem94 45588 fourierdlem103 45597 fourierdlem104 45598 fourierdlem113 45607 |
Copyright terms: Public domain | W3C validator |