MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iscn Structured version   Visualization version   GIF version

Theorem iscn 23159
Description: The predicate "the class 𝐹 is a continuous function from topology 𝐽 to topology 𝐾". Definition of continuous function in [Munkres] p. 102. (Contributed by NM, 17-Oct-2006.) (Revised by Mario Carneiro, 21-Aug-2015.)
Assertion
Ref Expression
iscn ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝐹 ∈ (𝐽 Cn 𝐾) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑦𝐾 (𝐹𝑦) ∈ 𝐽)))
Distinct variable groups:   𝑦,𝐽   𝑦,𝐾   𝑦,𝑋   𝑦,𝐹   𝑦,𝑌

Proof of Theorem iscn
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 cnfval 23157 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝐽 Cn 𝐾) = {𝑓 ∈ (𝑌m 𝑋) ∣ ∀𝑦𝐾 (𝑓𝑦) ∈ 𝐽})
21eleq2d 2815 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝐹 ∈ (𝐽 Cn 𝐾) ↔ 𝐹 ∈ {𝑓 ∈ (𝑌m 𝑋) ∣ ∀𝑦𝐾 (𝑓𝑦) ∈ 𝐽}))
3 cnveq 5880 . . . . . . 7 (𝑓 = 𝐹𝑓 = 𝐹)
43imaeq1d 6067 . . . . . 6 (𝑓 = 𝐹 → (𝑓𝑦) = (𝐹𝑦))
54eleq1d 2814 . . . . 5 (𝑓 = 𝐹 → ((𝑓𝑦) ∈ 𝐽 ↔ (𝐹𝑦) ∈ 𝐽))
65ralbidv 3175 . . . 4 (𝑓 = 𝐹 → (∀𝑦𝐾 (𝑓𝑦) ∈ 𝐽 ↔ ∀𝑦𝐾 (𝐹𝑦) ∈ 𝐽))
76elrab 3684 . . 3 (𝐹 ∈ {𝑓 ∈ (𝑌m 𝑋) ∣ ∀𝑦𝐾 (𝑓𝑦) ∈ 𝐽} ↔ (𝐹 ∈ (𝑌m 𝑋) ∧ ∀𝑦𝐾 (𝐹𝑦) ∈ 𝐽))
8 toponmax 22848 . . . . 5 (𝐾 ∈ (TopOn‘𝑌) → 𝑌𝐾)
9 toponmax 22848 . . . . 5 (𝐽 ∈ (TopOn‘𝑋) → 𝑋𝐽)
10 elmapg 8864 . . . . 5 ((𝑌𝐾𝑋𝐽) → (𝐹 ∈ (𝑌m 𝑋) ↔ 𝐹:𝑋𝑌))
118, 9, 10syl2anr 595 . . . 4 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝐹 ∈ (𝑌m 𝑋) ↔ 𝐹:𝑋𝑌))
1211anbi1d 629 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → ((𝐹 ∈ (𝑌m 𝑋) ∧ ∀𝑦𝐾 (𝐹𝑦) ∈ 𝐽) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑦𝐾 (𝐹𝑦) ∈ 𝐽)))
137, 12bitrid 282 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝐹 ∈ {𝑓 ∈ (𝑌m 𝑋) ∣ ∀𝑦𝐾 (𝑓𝑦) ∈ 𝐽} ↔ (𝐹:𝑋𝑌 ∧ ∀𝑦𝐾 (𝐹𝑦) ∈ 𝐽)))
142, 13bitrd 278 1 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝐹 ∈ (𝐽 Cn 𝐾) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑦𝐾 (𝐹𝑦) ∈ 𝐽)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394   = wceq 1533  wcel 2098  wral 3058  {crab 3430  ccnv 5681  cima 5685  wf 6549  cfv 6553  (class class class)co 7426  m cmap 8851  TopOnctopon 22832   Cn ccn 23148
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2699  ax-sep 5303  ax-nul 5310  ax-pow 5369  ax-pr 5433  ax-un 7746
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2529  df-eu 2558  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-ral 3059  df-rex 3068  df-rab 3431  df-v 3475  df-sbc 3779  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4327  df-if 4533  df-pw 4608  df-sn 4633  df-pr 4635  df-op 4639  df-uni 4913  df-br 5153  df-opab 5215  df-mpt 5236  df-id 5580  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-iota 6505  df-fun 6555  df-fn 6556  df-f 6557  df-fv 6561  df-ov 7429  df-oprab 7430  df-mpo 7431  df-map 8853  df-top 22816  df-topon 22833  df-cn 23151
This theorem is referenced by:  iscn2  23162  cnf2  23173  tgcn  23176  ssidcn  23179  iscncl  23193  cnntr  23199  cnss1  23200  cnss2  23201  cncnp  23204  cnrest  23209  cnrest2  23210  cndis  23215  cnindis  23216  kgencn  23480  kgencn3  23482  tx1cn  23533  tx2cn  23534  txdis1cn  23559  qtopid  23629  qtopcn  23638  qtopf1  23740  qustgplem  24045  ucncn  24210  cvmlift2lem9a  34946  rfcnpre1  44412  0cnf  45294
  Copyright terms: Public domain W3C validator
OSZAR »