MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ucncn Structured version   Visualization version   GIF version

Theorem ucncn 24210
Description: Uniform continuity implies continuity. Deduction form. Proposition 1 of [BourbakiTop1] p. II.6. (Contributed by Thierry Arnoux, 30-Nov-2017.)
Hypotheses
Ref Expression
ucncn.j 𝐽 = (TopOpen‘𝑅)
ucncn.k 𝐾 = (TopOpen‘𝑆)
ucncn.1 (𝜑𝑅 ∈ UnifSp)
ucncn.2 (𝜑𝑆 ∈ UnifSp)
ucncn.3 (𝜑𝑅 ∈ TopSp)
ucncn.4 (𝜑𝑆 ∈ TopSp)
ucncn.5 (𝜑𝐹 ∈ ((UnifSt‘𝑅) Cnu(UnifSt‘𝑆)))
Assertion
Ref Expression
ucncn (𝜑𝐹 ∈ (𝐽 Cn 𝐾))

Proof of Theorem ucncn
Dummy variables 𝑟 𝑎 𝑠 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ucncn.5 . . . 4 (𝜑𝐹 ∈ ((UnifSt‘𝑅) Cnu(UnifSt‘𝑆)))
2 ucncn.1 . . . . . 6 (𝜑𝑅 ∈ UnifSp)
3 eqid 2728 . . . . . . . 8 (Base‘𝑅) = (Base‘𝑅)
4 eqid 2728 . . . . . . . 8 (UnifSt‘𝑅) = (UnifSt‘𝑅)
5 ucncn.j . . . . . . . 8 𝐽 = (TopOpen‘𝑅)
63, 4, 5isusp 24186 . . . . . . 7 (𝑅 ∈ UnifSp ↔ ((UnifSt‘𝑅) ∈ (UnifOn‘(Base‘𝑅)) ∧ 𝐽 = (unifTop‘(UnifSt‘𝑅))))
76simplbi 496 . . . . . 6 (𝑅 ∈ UnifSp → (UnifSt‘𝑅) ∈ (UnifOn‘(Base‘𝑅)))
82, 7syl 17 . . . . 5 (𝜑 → (UnifSt‘𝑅) ∈ (UnifOn‘(Base‘𝑅)))
9 ucncn.2 . . . . . 6 (𝜑𝑆 ∈ UnifSp)
10 eqid 2728 . . . . . . . 8 (Base‘𝑆) = (Base‘𝑆)
11 eqid 2728 . . . . . . . 8 (UnifSt‘𝑆) = (UnifSt‘𝑆)
12 ucncn.k . . . . . . . 8 𝐾 = (TopOpen‘𝑆)
1310, 11, 12isusp 24186 . . . . . . 7 (𝑆 ∈ UnifSp ↔ ((UnifSt‘𝑆) ∈ (UnifOn‘(Base‘𝑆)) ∧ 𝐾 = (unifTop‘(UnifSt‘𝑆))))
1413simplbi 496 . . . . . 6 (𝑆 ∈ UnifSp → (UnifSt‘𝑆) ∈ (UnifOn‘(Base‘𝑆)))
159, 14syl 17 . . . . 5 (𝜑 → (UnifSt‘𝑆) ∈ (UnifOn‘(Base‘𝑆)))
16 isucn 24203 . . . . 5 (((UnifSt‘𝑅) ∈ (UnifOn‘(Base‘𝑅)) ∧ (UnifSt‘𝑆) ∈ (UnifOn‘(Base‘𝑆))) → (𝐹 ∈ ((UnifSt‘𝑅) Cnu(UnifSt‘𝑆)) ↔ (𝐹:(Base‘𝑅)⟶(Base‘𝑆) ∧ ∀𝑠 ∈ (UnifSt‘𝑆)∃𝑟 ∈ (UnifSt‘𝑅)∀𝑥 ∈ (Base‘𝑅)∀𝑧 ∈ (Base‘𝑅)(𝑥𝑟𝑧 → (𝐹𝑥)𝑠(𝐹𝑧)))))
178, 15, 16syl2anc 582 . . . 4 (𝜑 → (𝐹 ∈ ((UnifSt‘𝑅) Cnu(UnifSt‘𝑆)) ↔ (𝐹:(Base‘𝑅)⟶(Base‘𝑆) ∧ ∀𝑠 ∈ (UnifSt‘𝑆)∃𝑟 ∈ (UnifSt‘𝑅)∀𝑥 ∈ (Base‘𝑅)∀𝑧 ∈ (Base‘𝑅)(𝑥𝑟𝑧 → (𝐹𝑥)𝑠(𝐹𝑧)))))
181, 17mpbid 231 . . 3 (𝜑 → (𝐹:(Base‘𝑅)⟶(Base‘𝑆) ∧ ∀𝑠 ∈ (UnifSt‘𝑆)∃𝑟 ∈ (UnifSt‘𝑅)∀𝑥 ∈ (Base‘𝑅)∀𝑧 ∈ (Base‘𝑅)(𝑥𝑟𝑧 → (𝐹𝑥)𝑠(𝐹𝑧))))
1918simpld 493 . 2 (𝜑𝐹:(Base‘𝑅)⟶(Base‘𝑆))
20 cnvimass 6090 . . . . 5 (𝐹𝑎) ⊆ dom 𝐹
2119fdmd 6738 . . . . . 6 (𝜑 → dom 𝐹 = (Base‘𝑅))
2221adantr 479 . . . . 5 ((𝜑𝑎𝐾) → dom 𝐹 = (Base‘𝑅))
2320, 22sseqtrid 4034 . . . 4 ((𝜑𝑎𝐾) → (𝐹𝑎) ⊆ (Base‘𝑅))
24 simplll 773 . . . . . . . . 9 ((((𝜑𝑎𝐾) ∧ 𝑥 ∈ (𝐹𝑎)) ∧ 𝑠 ∈ (UnifSt‘𝑆)) → 𝜑)
25 simpr 483 . . . . . . . . 9 ((((𝜑𝑎𝐾) ∧ 𝑥 ∈ (𝐹𝑎)) ∧ 𝑠 ∈ (UnifSt‘𝑆)) → 𝑠 ∈ (UnifSt‘𝑆))
2623ad2antrr 724 . . . . . . . . . 10 ((((𝜑𝑎𝐾) ∧ 𝑥 ∈ (𝐹𝑎)) ∧ 𝑠 ∈ (UnifSt‘𝑆)) → (𝐹𝑎) ⊆ (Base‘𝑅))
27 simplr 767 . . . . . . . . . 10 ((((𝜑𝑎𝐾) ∧ 𝑥 ∈ (𝐹𝑎)) ∧ 𝑠 ∈ (UnifSt‘𝑆)) → 𝑥 ∈ (𝐹𝑎))
2826, 27sseldd 3983 . . . . . . . . 9 ((((𝜑𝑎𝐾) ∧ 𝑥 ∈ (𝐹𝑎)) ∧ 𝑠 ∈ (UnifSt‘𝑆)) → 𝑥 ∈ (Base‘𝑅))
2918simprd 494 . . . . . . . . . . . 12 (𝜑 → ∀𝑠 ∈ (UnifSt‘𝑆)∃𝑟 ∈ (UnifSt‘𝑅)∀𝑥 ∈ (Base‘𝑅)∀𝑧 ∈ (Base‘𝑅)(𝑥𝑟𝑧 → (𝐹𝑥)𝑠(𝐹𝑧)))
3029r19.21bi 3246 . . . . . . . . . . 11 ((𝜑𝑠 ∈ (UnifSt‘𝑆)) → ∃𝑟 ∈ (UnifSt‘𝑅)∀𝑥 ∈ (Base‘𝑅)∀𝑧 ∈ (Base‘𝑅)(𝑥𝑟𝑧 → (𝐹𝑥)𝑠(𝐹𝑧)))
31 r19.12 3309 . . . . . . . . . . 11 (∃𝑟 ∈ (UnifSt‘𝑅)∀𝑥 ∈ (Base‘𝑅)∀𝑧 ∈ (Base‘𝑅)(𝑥𝑟𝑧 → (𝐹𝑥)𝑠(𝐹𝑧)) → ∀𝑥 ∈ (Base‘𝑅)∃𝑟 ∈ (UnifSt‘𝑅)∀𝑧 ∈ (Base‘𝑅)(𝑥𝑟𝑧 → (𝐹𝑥)𝑠(𝐹𝑧)))
3230, 31syl 17 . . . . . . . . . 10 ((𝜑𝑠 ∈ (UnifSt‘𝑆)) → ∀𝑥 ∈ (Base‘𝑅)∃𝑟 ∈ (UnifSt‘𝑅)∀𝑧 ∈ (Base‘𝑅)(𝑥𝑟𝑧 → (𝐹𝑥)𝑠(𝐹𝑧)))
3332r19.21bi 3246 . . . . . . . . 9 (((𝜑𝑠 ∈ (UnifSt‘𝑆)) ∧ 𝑥 ∈ (Base‘𝑅)) → ∃𝑟 ∈ (UnifSt‘𝑅)∀𝑧 ∈ (Base‘𝑅)(𝑥𝑟𝑧 → (𝐹𝑥)𝑠(𝐹𝑧)))
3424, 25, 28, 33syl21anc 836 . . . . . . . 8 ((((𝜑𝑎𝐾) ∧ 𝑥 ∈ (𝐹𝑎)) ∧ 𝑠 ∈ (UnifSt‘𝑆)) → ∃𝑟 ∈ (UnifSt‘𝑅)∀𝑧 ∈ (Base‘𝑅)(𝑥𝑟𝑧 → (𝐹𝑥)𝑠(𝐹𝑧)))
3534adantr 479 . . . . . . 7 (((((𝜑𝑎𝐾) ∧ 𝑥 ∈ (𝐹𝑎)) ∧ 𝑠 ∈ (UnifSt‘𝑆)) ∧ (𝑠 “ {(𝐹𝑥)}) ⊆ 𝑎) → ∃𝑟 ∈ (UnifSt‘𝑅)∀𝑧 ∈ (Base‘𝑅)(𝑥𝑟𝑧 → (𝐹𝑥)𝑠(𝐹𝑧)))
3624ad3antrrr 728 . . . . . . . . . 10 (((((((𝜑𝑎𝐾) ∧ 𝑥 ∈ (𝐹𝑎)) ∧ 𝑠 ∈ (UnifSt‘𝑆)) ∧ (𝑠 “ {(𝐹𝑥)}) ⊆ 𝑎) ∧ 𝑟 ∈ (UnifSt‘𝑅)) ∧ ∀𝑧 ∈ (Base‘𝑅)(𝑥𝑟𝑧 → (𝐹𝑥)𝑠(𝐹𝑧))) → 𝜑)
378ad5antr 732 . . . . . . . . . . . 12 ((((((𝜑𝑎𝐾) ∧ 𝑥 ∈ (𝐹𝑎)) ∧ 𝑠 ∈ (UnifSt‘𝑆)) ∧ (𝑠 “ {(𝐹𝑥)}) ⊆ 𝑎) ∧ 𝑟 ∈ (UnifSt‘𝑅)) → (UnifSt‘𝑅) ∈ (UnifOn‘(Base‘𝑅)))
38 simpr 483 . . . . . . . . . . . 12 ((((((𝜑𝑎𝐾) ∧ 𝑥 ∈ (𝐹𝑎)) ∧ 𝑠 ∈ (UnifSt‘𝑆)) ∧ (𝑠 “ {(𝐹𝑥)}) ⊆ 𝑎) ∧ 𝑟 ∈ (UnifSt‘𝑅)) → 𝑟 ∈ (UnifSt‘𝑅))
39 ustrel 24136 . . . . . . . . . . . 12 (((UnifSt‘𝑅) ∈ (UnifOn‘(Base‘𝑅)) ∧ 𝑟 ∈ (UnifSt‘𝑅)) → Rel 𝑟)
4037, 38, 39syl2anc 582 . . . . . . . . . . 11 ((((((𝜑𝑎𝐾) ∧ 𝑥 ∈ (𝐹𝑎)) ∧ 𝑠 ∈ (UnifSt‘𝑆)) ∧ (𝑠 “ {(𝐹𝑥)}) ⊆ 𝑎) ∧ 𝑟 ∈ (UnifSt‘𝑅)) → Rel 𝑟)
4140adantr 479 . . . . . . . . . 10 (((((((𝜑𝑎𝐾) ∧ 𝑥 ∈ (𝐹𝑎)) ∧ 𝑠 ∈ (UnifSt‘𝑆)) ∧ (𝑠 “ {(𝐹𝑥)}) ⊆ 𝑎) ∧ 𝑟 ∈ (UnifSt‘𝑅)) ∧ ∀𝑧 ∈ (Base‘𝑅)(𝑥𝑟𝑧 → (𝐹𝑥)𝑠(𝐹𝑧))) → Rel 𝑟)
4236, 8syl 17 . . . . . . . . . . 11 (((((((𝜑𝑎𝐾) ∧ 𝑥 ∈ (𝐹𝑎)) ∧ 𝑠 ∈ (UnifSt‘𝑆)) ∧ (𝑠 “ {(𝐹𝑥)}) ⊆ 𝑎) ∧ 𝑟 ∈ (UnifSt‘𝑅)) ∧ ∀𝑧 ∈ (Base‘𝑅)(𝑥𝑟𝑧 → (𝐹𝑥)𝑠(𝐹𝑧))) → (UnifSt‘𝑅) ∈ (UnifOn‘(Base‘𝑅)))
43 simplr 767 . . . . . . . . . . 11 (((((((𝜑𝑎𝐾) ∧ 𝑥 ∈ (𝐹𝑎)) ∧ 𝑠 ∈ (UnifSt‘𝑆)) ∧ (𝑠 “ {(𝐹𝑥)}) ⊆ 𝑎) ∧ 𝑟 ∈ (UnifSt‘𝑅)) ∧ ∀𝑧 ∈ (Base‘𝑅)(𝑥𝑟𝑧 → (𝐹𝑥)𝑠(𝐹𝑧))) → 𝑟 ∈ (UnifSt‘𝑅))
4428ad3antrrr 728 . . . . . . . . . . 11 (((((((𝜑𝑎𝐾) ∧ 𝑥 ∈ (𝐹𝑎)) ∧ 𝑠 ∈ (UnifSt‘𝑆)) ∧ (𝑠 “ {(𝐹𝑥)}) ⊆ 𝑎) ∧ 𝑟 ∈ (UnifSt‘𝑅)) ∧ ∀𝑧 ∈ (Base‘𝑅)(𝑥𝑟𝑧 → (𝐹𝑥)𝑠(𝐹𝑧))) → 𝑥 ∈ (Base‘𝑅))
45 ustimasn 24153 . . . . . . . . . . 11 (((UnifSt‘𝑅) ∈ (UnifOn‘(Base‘𝑅)) ∧ 𝑟 ∈ (UnifSt‘𝑅) ∧ 𝑥 ∈ (Base‘𝑅)) → (𝑟 “ {𝑥}) ⊆ (Base‘𝑅))
4642, 43, 44, 45syl3anc 1368 . . . . . . . . . 10 (((((((𝜑𝑎𝐾) ∧ 𝑥 ∈ (𝐹𝑎)) ∧ 𝑠 ∈ (UnifSt‘𝑆)) ∧ (𝑠 “ {(𝐹𝑥)}) ⊆ 𝑎) ∧ 𝑟 ∈ (UnifSt‘𝑅)) ∧ ∀𝑧 ∈ (Base‘𝑅)(𝑥𝑟𝑧 → (𝐹𝑥)𝑠(𝐹𝑧))) → (𝑟 “ {𝑥}) ⊆ (Base‘𝑅))
47 simpr 483 . . . . . . . . . . 11 (((((((𝜑𝑎𝐾) ∧ 𝑥 ∈ (𝐹𝑎)) ∧ 𝑠 ∈ (UnifSt‘𝑆)) ∧ (𝑠 “ {(𝐹𝑥)}) ⊆ 𝑎) ∧ 𝑟 ∈ (UnifSt‘𝑅)) ∧ ∀𝑧 ∈ (Base‘𝑅)(𝑥𝑟𝑧 → (𝐹𝑥)𝑠(𝐹𝑧))) → ∀𝑧 ∈ (Base‘𝑅)(𝑥𝑟𝑧 → (𝐹𝑥)𝑠(𝐹𝑧)))
48 simplr 767 . . . . . . . . . . . . . . 15 ((((((((𝜑𝑎𝐾) ∧ 𝑥 ∈ (𝐹𝑎)) ∧ 𝑠 ∈ (UnifSt‘𝑆)) ∧ (𝑠 “ {(𝐹𝑥)}) ⊆ 𝑎) ∧ 𝑟 ∈ (UnifSt‘𝑅)) ∧ 𝑧 ∈ (Base‘𝑅)) ∧ (𝐹𝑥)𝑠(𝐹𝑧)) → 𝑧 ∈ (Base‘𝑅))
49 simpllr 774 . . . . . . . . . . . . . . . . 17 (((((((𝜑𝑎𝐾) ∧ 𝑥 ∈ (𝐹𝑎)) ∧ 𝑠 ∈ (UnifSt‘𝑆)) ∧ (𝑠 “ {(𝐹𝑥)}) ⊆ 𝑎) ∧ 𝑟 ∈ (UnifSt‘𝑅)) ∧ (𝐹𝑥)𝑠(𝐹𝑧)) → (𝑠 “ {(𝐹𝑥)}) ⊆ 𝑎)
5015ad5antr 732 . . . . . . . . . . . . . . . . . . . 20 ((((((𝜑𝑎𝐾) ∧ 𝑥 ∈ (𝐹𝑎)) ∧ 𝑠 ∈ (UnifSt‘𝑆)) ∧ (𝑠 “ {(𝐹𝑥)}) ⊆ 𝑎) ∧ 𝑟 ∈ (UnifSt‘𝑅)) → (UnifSt‘𝑆) ∈ (UnifOn‘(Base‘𝑆)))
51 simpllr 774 . . . . . . . . . . . . . . . . . . . 20 ((((((𝜑𝑎𝐾) ∧ 𝑥 ∈ (𝐹𝑎)) ∧ 𝑠 ∈ (UnifSt‘𝑆)) ∧ (𝑠 “ {(𝐹𝑥)}) ⊆ 𝑎) ∧ 𝑟 ∈ (UnifSt‘𝑅)) → 𝑠 ∈ (UnifSt‘𝑆))
52 ustrel 24136 . . . . . . . . . . . . . . . . . . . 20 (((UnifSt‘𝑆) ∈ (UnifOn‘(Base‘𝑆)) ∧ 𝑠 ∈ (UnifSt‘𝑆)) → Rel 𝑠)
5350, 51, 52syl2anc 582 . . . . . . . . . . . . . . . . . . 19 ((((((𝜑𝑎𝐾) ∧ 𝑥 ∈ (𝐹𝑎)) ∧ 𝑠 ∈ (UnifSt‘𝑆)) ∧ (𝑠 “ {(𝐹𝑥)}) ⊆ 𝑎) ∧ 𝑟 ∈ (UnifSt‘𝑅)) → Rel 𝑠)
54 elrelimasn 6094 . . . . . . . . . . . . . . . . . . 19 (Rel 𝑠 → ((𝐹𝑧) ∈ (𝑠 “ {(𝐹𝑥)}) ↔ (𝐹𝑥)𝑠(𝐹𝑧)))
5553, 54syl 17 . . . . . . . . . . . . . . . . . 18 ((((((𝜑𝑎𝐾) ∧ 𝑥 ∈ (𝐹𝑎)) ∧ 𝑠 ∈ (UnifSt‘𝑆)) ∧ (𝑠 “ {(𝐹𝑥)}) ⊆ 𝑎) ∧ 𝑟 ∈ (UnifSt‘𝑅)) → ((𝐹𝑧) ∈ (𝑠 “ {(𝐹𝑥)}) ↔ (𝐹𝑥)𝑠(𝐹𝑧)))
5655biimpar 476 . . . . . . . . . . . . . . . . 17 (((((((𝜑𝑎𝐾) ∧ 𝑥 ∈ (𝐹𝑎)) ∧ 𝑠 ∈ (UnifSt‘𝑆)) ∧ (𝑠 “ {(𝐹𝑥)}) ⊆ 𝑎) ∧ 𝑟 ∈ (UnifSt‘𝑅)) ∧ (𝐹𝑥)𝑠(𝐹𝑧)) → (𝐹𝑧) ∈ (𝑠 “ {(𝐹𝑥)}))
5749, 56sseldd 3983 . . . . . . . . . . . . . . . 16 (((((((𝜑𝑎𝐾) ∧ 𝑥 ∈ (𝐹𝑎)) ∧ 𝑠 ∈ (UnifSt‘𝑆)) ∧ (𝑠 “ {(𝐹𝑥)}) ⊆ 𝑎) ∧ 𝑟 ∈ (UnifSt‘𝑅)) ∧ (𝐹𝑥)𝑠(𝐹𝑧)) → (𝐹𝑧) ∈ 𝑎)
5857adantlr 713 . . . . . . . . . . . . . . 15 ((((((((𝜑𝑎𝐾) ∧ 𝑥 ∈ (𝐹𝑎)) ∧ 𝑠 ∈ (UnifSt‘𝑆)) ∧ (𝑠 “ {(𝐹𝑥)}) ⊆ 𝑎) ∧ 𝑟 ∈ (UnifSt‘𝑅)) ∧ 𝑧 ∈ (Base‘𝑅)) ∧ (𝐹𝑥)𝑠(𝐹𝑧)) → (𝐹𝑧) ∈ 𝑎)
59 ffn 6727 . . . . . . . . . . . . . . . . 17 (𝐹:(Base‘𝑅)⟶(Base‘𝑆) → 𝐹 Fn (Base‘𝑅))
60 elpreima 7072 . . . . . . . . . . . . . . . . 17 (𝐹 Fn (Base‘𝑅) → (𝑧 ∈ (𝐹𝑎) ↔ (𝑧 ∈ (Base‘𝑅) ∧ (𝐹𝑧) ∈ 𝑎)))
6119, 59, 603syl 18 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑧 ∈ (𝐹𝑎) ↔ (𝑧 ∈ (Base‘𝑅) ∧ (𝐹𝑧) ∈ 𝑎)))
6261ad7antr 736 . . . . . . . . . . . . . . 15 ((((((((𝜑𝑎𝐾) ∧ 𝑥 ∈ (𝐹𝑎)) ∧ 𝑠 ∈ (UnifSt‘𝑆)) ∧ (𝑠 “ {(𝐹𝑥)}) ⊆ 𝑎) ∧ 𝑟 ∈ (UnifSt‘𝑅)) ∧ 𝑧 ∈ (Base‘𝑅)) ∧ (𝐹𝑥)𝑠(𝐹𝑧)) → (𝑧 ∈ (𝐹𝑎) ↔ (𝑧 ∈ (Base‘𝑅) ∧ (𝐹𝑧) ∈ 𝑎)))
6348, 58, 62mpbir2and 711 . . . . . . . . . . . . . 14 ((((((((𝜑𝑎𝐾) ∧ 𝑥 ∈ (𝐹𝑎)) ∧ 𝑠 ∈ (UnifSt‘𝑆)) ∧ (𝑠 “ {(𝐹𝑥)}) ⊆ 𝑎) ∧ 𝑟 ∈ (UnifSt‘𝑅)) ∧ 𝑧 ∈ (Base‘𝑅)) ∧ (𝐹𝑥)𝑠(𝐹𝑧)) → 𝑧 ∈ (𝐹𝑎))
6463ex 411 . . . . . . . . . . . . 13 (((((((𝜑𝑎𝐾) ∧ 𝑥 ∈ (𝐹𝑎)) ∧ 𝑠 ∈ (UnifSt‘𝑆)) ∧ (𝑠 “ {(𝐹𝑥)}) ⊆ 𝑎) ∧ 𝑟 ∈ (UnifSt‘𝑅)) ∧ 𝑧 ∈ (Base‘𝑅)) → ((𝐹𝑥)𝑠(𝐹𝑧) → 𝑧 ∈ (𝐹𝑎)))
6564ralrimiva 3143 . . . . . . . . . . . 12 ((((((𝜑𝑎𝐾) ∧ 𝑥 ∈ (𝐹𝑎)) ∧ 𝑠 ∈ (UnifSt‘𝑆)) ∧ (𝑠 “ {(𝐹𝑥)}) ⊆ 𝑎) ∧ 𝑟 ∈ (UnifSt‘𝑅)) → ∀𝑧 ∈ (Base‘𝑅)((𝐹𝑥)𝑠(𝐹𝑧) → 𝑧 ∈ (𝐹𝑎)))
6665adantr 479 . . . . . . . . . . 11 (((((((𝜑𝑎𝐾) ∧ 𝑥 ∈ (𝐹𝑎)) ∧ 𝑠 ∈ (UnifSt‘𝑆)) ∧ (𝑠 “ {(𝐹𝑥)}) ⊆ 𝑎) ∧ 𝑟 ∈ (UnifSt‘𝑅)) ∧ ∀𝑧 ∈ (Base‘𝑅)(𝑥𝑟𝑧 → (𝐹𝑥)𝑠(𝐹𝑧))) → ∀𝑧 ∈ (Base‘𝑅)((𝐹𝑥)𝑠(𝐹𝑧) → 𝑧 ∈ (𝐹𝑎)))
67 r19.26 3108 . . . . . . . . . . . 12 (∀𝑧 ∈ (Base‘𝑅)((𝑥𝑟𝑧 → (𝐹𝑥)𝑠(𝐹𝑧)) ∧ ((𝐹𝑥)𝑠(𝐹𝑧) → 𝑧 ∈ (𝐹𝑎))) ↔ (∀𝑧 ∈ (Base‘𝑅)(𝑥𝑟𝑧 → (𝐹𝑥)𝑠(𝐹𝑧)) ∧ ∀𝑧 ∈ (Base‘𝑅)((𝐹𝑥)𝑠(𝐹𝑧) → 𝑧 ∈ (𝐹𝑎))))
68 pm3.33 763 . . . . . . . . . . . . 13 (((𝑥𝑟𝑧 → (𝐹𝑥)𝑠(𝐹𝑧)) ∧ ((𝐹𝑥)𝑠(𝐹𝑧) → 𝑧 ∈ (𝐹𝑎))) → (𝑥𝑟𝑧𝑧 ∈ (𝐹𝑎)))
6968ralimi 3080 . . . . . . . . . . . 12 (∀𝑧 ∈ (Base‘𝑅)((𝑥𝑟𝑧 → (𝐹𝑥)𝑠(𝐹𝑧)) ∧ ((𝐹𝑥)𝑠(𝐹𝑧) → 𝑧 ∈ (𝐹𝑎))) → ∀𝑧 ∈ (Base‘𝑅)(𝑥𝑟𝑧𝑧 ∈ (𝐹𝑎)))
7067, 69sylbir 234 . . . . . . . . . . 11 ((∀𝑧 ∈ (Base‘𝑅)(𝑥𝑟𝑧 → (𝐹𝑥)𝑠(𝐹𝑧)) ∧ ∀𝑧 ∈ (Base‘𝑅)((𝐹𝑥)𝑠(𝐹𝑧) → 𝑧 ∈ (𝐹𝑎))) → ∀𝑧 ∈ (Base‘𝑅)(𝑥𝑟𝑧𝑧 ∈ (𝐹𝑎)))
7147, 66, 70syl2anc 582 . . . . . . . . . 10 (((((((𝜑𝑎𝐾) ∧ 𝑥 ∈ (𝐹𝑎)) ∧ 𝑠 ∈ (UnifSt‘𝑆)) ∧ (𝑠 “ {(𝐹𝑥)}) ⊆ 𝑎) ∧ 𝑟 ∈ (UnifSt‘𝑅)) ∧ ∀𝑧 ∈ (Base‘𝑅)(𝑥𝑟𝑧 → (𝐹𝑥)𝑠(𝐹𝑧))) → ∀𝑧 ∈ (Base‘𝑅)(𝑥𝑟𝑧𝑧 ∈ (𝐹𝑎)))
72 simpl2l 1223 . . . . . . . . . . . . . 14 (((𝜑 ∧ (Rel 𝑟 ∧ (𝑟 “ {𝑥}) ⊆ (Base‘𝑅)) ∧ ∀𝑧 ∈ (Base‘𝑅)(𝑥𝑟𝑧𝑧 ∈ (𝐹𝑎))) ∧ 𝑦 ∈ (𝑟 “ {𝑥})) → Rel 𝑟)
73 simpr 483 . . . . . . . . . . . . . 14 (((𝜑 ∧ (Rel 𝑟 ∧ (𝑟 “ {𝑥}) ⊆ (Base‘𝑅)) ∧ ∀𝑧 ∈ (Base‘𝑅)(𝑥𝑟𝑧𝑧 ∈ (𝐹𝑎))) ∧ 𝑦 ∈ (𝑟 “ {𝑥})) → 𝑦 ∈ (𝑟 “ {𝑥}))
74 elrelimasn 6094 . . . . . . . . . . . . . . 15 (Rel 𝑟 → (𝑦 ∈ (𝑟 “ {𝑥}) ↔ 𝑥𝑟𝑦))
7574biimpa 475 . . . . . . . . . . . . . 14 ((Rel 𝑟𝑦 ∈ (𝑟 “ {𝑥})) → 𝑥𝑟𝑦)
7672, 73, 75syl2anc 582 . . . . . . . . . . . . 13 (((𝜑 ∧ (Rel 𝑟 ∧ (𝑟 “ {𝑥}) ⊆ (Base‘𝑅)) ∧ ∀𝑧 ∈ (Base‘𝑅)(𝑥𝑟𝑧𝑧 ∈ (𝐹𝑎))) ∧ 𝑦 ∈ (𝑟 “ {𝑥})) → 𝑥𝑟𝑦)
77 breq2 5156 . . . . . . . . . . . . . . 15 (𝑧 = 𝑦 → (𝑥𝑟𝑧𝑥𝑟𝑦))
78 eleq1w 2812 . . . . . . . . . . . . . . 15 (𝑧 = 𝑦 → (𝑧 ∈ (𝐹𝑎) ↔ 𝑦 ∈ (𝐹𝑎)))
7977, 78imbi12d 343 . . . . . . . . . . . . . 14 (𝑧 = 𝑦 → ((𝑥𝑟𝑧𝑧 ∈ (𝐹𝑎)) ↔ (𝑥𝑟𝑦𝑦 ∈ (𝐹𝑎))))
80 simpl3 1190 . . . . . . . . . . . . . 14 (((𝜑 ∧ (Rel 𝑟 ∧ (𝑟 “ {𝑥}) ⊆ (Base‘𝑅)) ∧ ∀𝑧 ∈ (Base‘𝑅)(𝑥𝑟𝑧𝑧 ∈ (𝐹𝑎))) ∧ 𝑦 ∈ (𝑟 “ {𝑥})) → ∀𝑧 ∈ (Base‘𝑅)(𝑥𝑟𝑧𝑧 ∈ (𝐹𝑎)))
81 simpl2r 1224 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (Rel 𝑟 ∧ (𝑟 “ {𝑥}) ⊆ (Base‘𝑅)) ∧ ∀𝑧 ∈ (Base‘𝑅)(𝑥𝑟𝑧𝑧 ∈ (𝐹𝑎))) ∧ 𝑦 ∈ (𝑟 “ {𝑥})) → (𝑟 “ {𝑥}) ⊆ (Base‘𝑅))
8281, 73sseldd 3983 . . . . . . . . . . . . . 14 (((𝜑 ∧ (Rel 𝑟 ∧ (𝑟 “ {𝑥}) ⊆ (Base‘𝑅)) ∧ ∀𝑧 ∈ (Base‘𝑅)(𝑥𝑟𝑧𝑧 ∈ (𝐹𝑎))) ∧ 𝑦 ∈ (𝑟 “ {𝑥})) → 𝑦 ∈ (Base‘𝑅))
8379, 80, 82rspcdva 3612 . . . . . . . . . . . . 13 (((𝜑 ∧ (Rel 𝑟 ∧ (𝑟 “ {𝑥}) ⊆ (Base‘𝑅)) ∧ ∀𝑧 ∈ (Base‘𝑅)(𝑥𝑟𝑧𝑧 ∈ (𝐹𝑎))) ∧ 𝑦 ∈ (𝑟 “ {𝑥})) → (𝑥𝑟𝑦𝑦 ∈ (𝐹𝑎)))
8476, 83mpd 15 . . . . . . . . . . . 12 (((𝜑 ∧ (Rel 𝑟 ∧ (𝑟 “ {𝑥}) ⊆ (Base‘𝑅)) ∧ ∀𝑧 ∈ (Base‘𝑅)(𝑥𝑟𝑧𝑧 ∈ (𝐹𝑎))) ∧ 𝑦 ∈ (𝑟 “ {𝑥})) → 𝑦 ∈ (𝐹𝑎))
8584ex 411 . . . . . . . . . . 11 ((𝜑 ∧ (Rel 𝑟 ∧ (𝑟 “ {𝑥}) ⊆ (Base‘𝑅)) ∧ ∀𝑧 ∈ (Base‘𝑅)(𝑥𝑟𝑧𝑧 ∈ (𝐹𝑎))) → (𝑦 ∈ (𝑟 “ {𝑥}) → 𝑦 ∈ (𝐹𝑎)))
8685ssrdv 3988 . . . . . . . . . 10 ((𝜑 ∧ (Rel 𝑟 ∧ (𝑟 “ {𝑥}) ⊆ (Base‘𝑅)) ∧ ∀𝑧 ∈ (Base‘𝑅)(𝑥𝑟𝑧𝑧 ∈ (𝐹𝑎))) → (𝑟 “ {𝑥}) ⊆ (𝐹𝑎))
8736, 41, 46, 71, 86syl121anc 1372 . . . . . . . . 9 (((((((𝜑𝑎𝐾) ∧ 𝑥 ∈ (𝐹𝑎)) ∧ 𝑠 ∈ (UnifSt‘𝑆)) ∧ (𝑠 “ {(𝐹𝑥)}) ⊆ 𝑎) ∧ 𝑟 ∈ (UnifSt‘𝑅)) ∧ ∀𝑧 ∈ (Base‘𝑅)(𝑥𝑟𝑧 → (𝐹𝑥)𝑠(𝐹𝑧))) → (𝑟 “ {𝑥}) ⊆ (𝐹𝑎))
8887ex 411 . . . . . . . 8 ((((((𝜑𝑎𝐾) ∧ 𝑥 ∈ (𝐹𝑎)) ∧ 𝑠 ∈ (UnifSt‘𝑆)) ∧ (𝑠 “ {(𝐹𝑥)}) ⊆ 𝑎) ∧ 𝑟 ∈ (UnifSt‘𝑅)) → (∀𝑧 ∈ (Base‘𝑅)(𝑥𝑟𝑧 → (𝐹𝑥)𝑠(𝐹𝑧)) → (𝑟 “ {𝑥}) ⊆ (𝐹𝑎)))
8988reximdva 3165 . . . . . . 7 (((((𝜑𝑎𝐾) ∧ 𝑥 ∈ (𝐹𝑎)) ∧ 𝑠 ∈ (UnifSt‘𝑆)) ∧ (𝑠 “ {(𝐹𝑥)}) ⊆ 𝑎) → (∃𝑟 ∈ (UnifSt‘𝑅)∀𝑧 ∈ (Base‘𝑅)(𝑥𝑟𝑧 → (𝐹𝑥)𝑠(𝐹𝑧)) → ∃𝑟 ∈ (UnifSt‘𝑅)(𝑟 “ {𝑥}) ⊆ (𝐹𝑎)))
9035, 89mpd 15 . . . . . 6 (((((𝜑𝑎𝐾) ∧ 𝑥 ∈ (𝐹𝑎)) ∧ 𝑠 ∈ (UnifSt‘𝑆)) ∧ (𝑠 “ {(𝐹𝑥)}) ⊆ 𝑎) → ∃𝑟 ∈ (UnifSt‘𝑅)(𝑟 “ {𝑥}) ⊆ (𝐹𝑎))
91 sneq 4642 . . . . . . . . . 10 (𝑦 = (𝐹𝑥) → {𝑦} = {(𝐹𝑥)})
9291imaeq2d 6068 . . . . . . . . 9 (𝑦 = (𝐹𝑥) → (𝑠 “ {𝑦}) = (𝑠 “ {(𝐹𝑥)}))
9392sseq1d 4013 . . . . . . . 8 (𝑦 = (𝐹𝑥) → ((𝑠 “ {𝑦}) ⊆ 𝑎 ↔ (𝑠 “ {(𝐹𝑥)}) ⊆ 𝑎))
9493rexbidv 3176 . . . . . . 7 (𝑦 = (𝐹𝑥) → (∃𝑠 ∈ (UnifSt‘𝑆)(𝑠 “ {𝑦}) ⊆ 𝑎 ↔ ∃𝑠 ∈ (UnifSt‘𝑆)(𝑠 “ {(𝐹𝑥)}) ⊆ 𝑎))
95 simpr 483 . . . . . . . . . . 11 ((𝜑𝑎𝐾) → 𝑎𝐾)
9613simprbi 495 . . . . . . . . . . . . 13 (𝑆 ∈ UnifSp → 𝐾 = (unifTop‘(UnifSt‘𝑆)))
979, 96syl 17 . . . . . . . . . . . 12 (𝜑𝐾 = (unifTop‘(UnifSt‘𝑆)))
9897adantr 479 . . . . . . . . . . 11 ((𝜑𝑎𝐾) → 𝐾 = (unifTop‘(UnifSt‘𝑆)))
9995, 98eleqtrd 2831 . . . . . . . . . 10 ((𝜑𝑎𝐾) → 𝑎 ∈ (unifTop‘(UnifSt‘𝑆)))
100 elutop 24158 . . . . . . . . . . . 12 ((UnifSt‘𝑆) ∈ (UnifOn‘(Base‘𝑆)) → (𝑎 ∈ (unifTop‘(UnifSt‘𝑆)) ↔ (𝑎 ⊆ (Base‘𝑆) ∧ ∀𝑦𝑎𝑠 ∈ (UnifSt‘𝑆)(𝑠 “ {𝑦}) ⊆ 𝑎)))
10115, 100syl 17 . . . . . . . . . . 11 (𝜑 → (𝑎 ∈ (unifTop‘(UnifSt‘𝑆)) ↔ (𝑎 ⊆ (Base‘𝑆) ∧ ∀𝑦𝑎𝑠 ∈ (UnifSt‘𝑆)(𝑠 “ {𝑦}) ⊆ 𝑎)))
102101adantr 479 . . . . . . . . . 10 ((𝜑𝑎𝐾) → (𝑎 ∈ (unifTop‘(UnifSt‘𝑆)) ↔ (𝑎 ⊆ (Base‘𝑆) ∧ ∀𝑦𝑎𝑠 ∈ (UnifSt‘𝑆)(𝑠 “ {𝑦}) ⊆ 𝑎)))
10399, 102mpbid 231 . . . . . . . . 9 ((𝜑𝑎𝐾) → (𝑎 ⊆ (Base‘𝑆) ∧ ∀𝑦𝑎𝑠 ∈ (UnifSt‘𝑆)(𝑠 “ {𝑦}) ⊆ 𝑎))
104103simprd 494 . . . . . . . 8 ((𝜑𝑎𝐾) → ∀𝑦𝑎𝑠 ∈ (UnifSt‘𝑆)(𝑠 “ {𝑦}) ⊆ 𝑎)
105104adantr 479 . . . . . . 7 (((𝜑𝑎𝐾) ∧ 𝑥 ∈ (𝐹𝑎)) → ∀𝑦𝑎𝑠 ∈ (UnifSt‘𝑆)(𝑠 “ {𝑦}) ⊆ 𝑎)
106 elpreima 7072 . . . . . . . . . . 11 (𝐹 Fn (Base‘𝑅) → (𝑥 ∈ (𝐹𝑎) ↔ (𝑥 ∈ (Base‘𝑅) ∧ (𝐹𝑥) ∈ 𝑎)))
10719, 59, 1063syl 18 . . . . . . . . . 10 (𝜑 → (𝑥 ∈ (𝐹𝑎) ↔ (𝑥 ∈ (Base‘𝑅) ∧ (𝐹𝑥) ∈ 𝑎)))
108107adantr 479 . . . . . . . . 9 ((𝜑𝑎𝐾) → (𝑥 ∈ (𝐹𝑎) ↔ (𝑥 ∈ (Base‘𝑅) ∧ (𝐹𝑥) ∈ 𝑎)))
109108biimpa 475 . . . . . . . 8 (((𝜑𝑎𝐾) ∧ 𝑥 ∈ (𝐹𝑎)) → (𝑥 ∈ (Base‘𝑅) ∧ (𝐹𝑥) ∈ 𝑎))
110109simprd 494 . . . . . . 7 (((𝜑𝑎𝐾) ∧ 𝑥 ∈ (𝐹𝑎)) → (𝐹𝑥) ∈ 𝑎)
11194, 105, 110rspcdva 3612 . . . . . 6 (((𝜑𝑎𝐾) ∧ 𝑥 ∈ (𝐹𝑎)) → ∃𝑠 ∈ (UnifSt‘𝑆)(𝑠 “ {(𝐹𝑥)}) ⊆ 𝑎)
11290, 111r19.29a 3159 . . . . 5 (((𝜑𝑎𝐾) ∧ 𝑥 ∈ (𝐹𝑎)) → ∃𝑟 ∈ (UnifSt‘𝑅)(𝑟 “ {𝑥}) ⊆ (𝐹𝑎))
113112ralrimiva 3143 . . . 4 ((𝜑𝑎𝐾) → ∀𝑥 ∈ (𝐹𝑎)∃𝑟 ∈ (UnifSt‘𝑅)(𝑟 “ {𝑥}) ⊆ (𝐹𝑎))
1146simprbi 495 . . . . . . . 8 (𝑅 ∈ UnifSp → 𝐽 = (unifTop‘(UnifSt‘𝑅)))
1152, 114syl 17 . . . . . . 7 (𝜑𝐽 = (unifTop‘(UnifSt‘𝑅)))
116115adantr 479 . . . . . 6 ((𝜑𝑎𝐾) → 𝐽 = (unifTop‘(UnifSt‘𝑅)))
117116eleq2d 2815 . . . . 5 ((𝜑𝑎𝐾) → ((𝐹𝑎) ∈ 𝐽 ↔ (𝐹𝑎) ∈ (unifTop‘(UnifSt‘𝑅))))
118 elutop 24158 . . . . . . 7 ((UnifSt‘𝑅) ∈ (UnifOn‘(Base‘𝑅)) → ((𝐹𝑎) ∈ (unifTop‘(UnifSt‘𝑅)) ↔ ((𝐹𝑎) ⊆ (Base‘𝑅) ∧ ∀𝑥 ∈ (𝐹𝑎)∃𝑟 ∈ (UnifSt‘𝑅)(𝑟 “ {𝑥}) ⊆ (𝐹𝑎))))
1198, 118syl 17 . . . . . 6 (𝜑 → ((𝐹𝑎) ∈ (unifTop‘(UnifSt‘𝑅)) ↔ ((𝐹𝑎) ⊆ (Base‘𝑅) ∧ ∀𝑥 ∈ (𝐹𝑎)∃𝑟 ∈ (UnifSt‘𝑅)(𝑟 “ {𝑥}) ⊆ (𝐹𝑎))))
120119adantr 479 . . . . 5 ((𝜑𝑎𝐾) → ((𝐹𝑎) ∈ (unifTop‘(UnifSt‘𝑅)) ↔ ((𝐹𝑎) ⊆ (Base‘𝑅) ∧ ∀𝑥 ∈ (𝐹𝑎)∃𝑟 ∈ (UnifSt‘𝑅)(𝑟 “ {𝑥}) ⊆ (𝐹𝑎))))
121117, 120bitrd 278 . . . 4 ((𝜑𝑎𝐾) → ((𝐹𝑎) ∈ 𝐽 ↔ ((𝐹𝑎) ⊆ (Base‘𝑅) ∧ ∀𝑥 ∈ (𝐹𝑎)∃𝑟 ∈ (UnifSt‘𝑅)(𝑟 “ {𝑥}) ⊆ (𝐹𝑎))))
12223, 113, 121mpbir2and 711 . . 3 ((𝜑𝑎𝐾) → (𝐹𝑎) ∈ 𝐽)
123122ralrimiva 3143 . 2 (𝜑 → ∀𝑎𝐾 (𝐹𝑎) ∈ 𝐽)
124 ucncn.3 . . . 4 (𝜑𝑅 ∈ TopSp)
1253, 5istps 22856 . . . 4 (𝑅 ∈ TopSp ↔ 𝐽 ∈ (TopOn‘(Base‘𝑅)))
126124, 125sylib 217 . . 3 (𝜑𝐽 ∈ (TopOn‘(Base‘𝑅)))
127 ucncn.4 . . . 4 (𝜑𝑆 ∈ TopSp)
12810, 12istps 22856 . . . 4 (𝑆 ∈ TopSp ↔ 𝐾 ∈ (TopOn‘(Base‘𝑆)))
129127, 128sylib 217 . . 3 (𝜑𝐾 ∈ (TopOn‘(Base‘𝑆)))
130 iscn 23159 . . 3 ((𝐽 ∈ (TopOn‘(Base‘𝑅)) ∧ 𝐾 ∈ (TopOn‘(Base‘𝑆))) → (𝐹 ∈ (𝐽 Cn 𝐾) ↔ (𝐹:(Base‘𝑅)⟶(Base‘𝑆) ∧ ∀𝑎𝐾 (𝐹𝑎) ∈ 𝐽)))
131126, 129, 130syl2anc 582 . 2 (𝜑 → (𝐹 ∈ (𝐽 Cn 𝐾) ↔ (𝐹:(Base‘𝑅)⟶(Base‘𝑆) ∧ ∀𝑎𝐾 (𝐹𝑎) ∈ 𝐽)))
13219, 123, 131mpbir2and 711 1 (𝜑𝐹 ∈ (𝐽 Cn 𝐾))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394  w3a 1084   = wceq 1533  wcel 2098  wral 3058  wrex 3067  wss 3949  {csn 4632   class class class wbr 5152  ccnv 5681  dom cdm 5682  cima 5685  Rel wrel 5687   Fn wfn 6548  wf 6549  cfv 6553  (class class class)co 7426  Basecbs 17187  TopOpenctopn 17410  TopOnctopon 22832  TopSpctps 22854   Cn ccn 23148  UnifOncust 24124  unifTopcutop 24155  UnifStcuss 24178  UnifSpcusp 24179   Cnucucn 24200
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2699  ax-sep 5303  ax-nul 5310  ax-pow 5369  ax-pr 5433  ax-un 7746
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2529  df-eu 2558  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-ral 3059  df-rex 3068  df-rab 3431  df-v 3475  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4327  df-if 4533  df-pw 4608  df-sn 4633  df-pr 4635  df-op 4639  df-uni 4913  df-br 5153  df-opab 5215  df-mpt 5236  df-id 5580  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-iota 6505  df-fun 6555  df-fn 6556  df-f 6557  df-fv 6561  df-ov 7429  df-oprab 7430  df-mpo 7431  df-map 8853  df-top 22816  df-topon 22833  df-topsp 22855  df-cn 23151  df-ust 24125  df-utop 24156  df-usp 24182  df-ucn 24201
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator
OSZAR »