![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > iseqlgd | Structured version Visualization version GIF version |
Description: Condition for a triangle to be equilateral. (Contributed by Thierry Arnoux, 5-Oct-2020.) |
Ref | Expression |
---|---|
iseqlg.p | ⊢ 𝑃 = (Base‘𝐺) |
iseqlg.m | ⊢ − = (dist‘𝐺) |
iseqlg.i | ⊢ 𝐼 = (Itv‘𝐺) |
iseqlg.l | ⊢ 𝐿 = (LineG‘𝐺) |
iseqlg.g | ⊢ (𝜑 → 𝐺 ∈ TarskiG) |
iseqlg.a | ⊢ (𝜑 → 𝐴 ∈ 𝑃) |
iseqlg.b | ⊢ (𝜑 → 𝐵 ∈ 𝑃) |
iseqlg.c | ⊢ (𝜑 → 𝐶 ∈ 𝑃) |
iseqlgd.1 | ⊢ (𝜑 → (𝐴 − 𝐵) = (𝐵 − 𝐶)) |
iseqlgd.2 | ⊢ (𝜑 → (𝐵 − 𝐶) = (𝐶 − 𝐴)) |
iseqlgd.3 | ⊢ (𝜑 → (𝐶 − 𝐴) = (𝐴 − 𝐵)) |
Ref | Expression |
---|---|
iseqlgd | ⊢ (𝜑 → 〈“𝐴𝐵𝐶”〉 ∈ (eqltrG‘𝐺)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iseqlg.p | . . 3 ⊢ 𝑃 = (Base‘𝐺) | |
2 | iseqlg.m | . . 3 ⊢ − = (dist‘𝐺) | |
3 | eqid 2728 | . . 3 ⊢ (cgrG‘𝐺) = (cgrG‘𝐺) | |
4 | iseqlg.g | . . 3 ⊢ (𝜑 → 𝐺 ∈ TarskiG) | |
5 | iseqlg.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑃) | |
6 | iseqlg.b | . . 3 ⊢ (𝜑 → 𝐵 ∈ 𝑃) | |
7 | iseqlg.c | . . 3 ⊢ (𝜑 → 𝐶 ∈ 𝑃) | |
8 | iseqlgd.1 | . . 3 ⊢ (𝜑 → (𝐴 − 𝐵) = (𝐵 − 𝐶)) | |
9 | iseqlgd.2 | . . 3 ⊢ (𝜑 → (𝐵 − 𝐶) = (𝐶 − 𝐴)) | |
10 | iseqlgd.3 | . . 3 ⊢ (𝜑 → (𝐶 − 𝐴) = (𝐴 − 𝐵)) | |
11 | 1, 2, 3, 4, 5, 6, 7, 6, 7, 5, 8, 9, 10 | trgcgr 28319 | . 2 ⊢ (𝜑 → 〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝐵𝐶𝐴”〉) |
12 | iseqlg.i | . . 3 ⊢ 𝐼 = (Itv‘𝐺) | |
13 | iseqlg.l | . . 3 ⊢ 𝐿 = (LineG‘𝐺) | |
14 | 1, 2, 12, 13, 4, 5, 6, 7 | iseqlg 28670 | . 2 ⊢ (𝜑 → (〈“𝐴𝐵𝐶”〉 ∈ (eqltrG‘𝐺) ↔ 〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝐵𝐶𝐴”〉)) |
15 | 11, 14 | mpbird 257 | 1 ⊢ (𝜑 → 〈“𝐴𝐵𝐶”〉 ∈ (eqltrG‘𝐺)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1534 ∈ wcel 2099 class class class wbr 5148 ‘cfv 6548 (class class class)co 7420 〈“cs3 14825 Basecbs 17179 distcds 17241 TarskiGcstrkg 28230 Itvcitv 28236 LineGclng 28237 cgrGccgrg 28313 eqltrGceqlg 28668 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5365 ax-pr 5429 ax-un 7740 ax-cnex 11194 ax-resscn 11195 ax-1cn 11196 ax-icn 11197 ax-addcl 11198 ax-addrcl 11199 ax-mulcl 11200 ax-mulrcl 11201 ax-mulcom 11202 ax-addass 11203 ax-mulass 11204 ax-distr 11205 ax-i2m1 11206 ax-1ne0 11207 ax-1rid 11208 ax-rnegex 11209 ax-rrecex 11210 ax-cnre 11211 ax-pre-lttri 11212 ax-pre-lttrn 11213 ax-pre-ltadd 11214 ax-pre-mulgt0 11215 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-reu 3374 df-rab 3430 df-v 3473 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-tp 4634 df-op 4636 df-uni 4909 df-int 4950 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5576 df-eprel 5582 df-po 5590 df-so 5591 df-fr 5633 df-we 5635 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-pred 6305 df-ord 6372 df-on 6373 df-lim 6374 df-suc 6375 df-iota 6500 df-fun 6550 df-fn 6551 df-f 6552 df-f1 6553 df-fo 6554 df-f1o 6555 df-fv 6556 df-riota 7376 df-ov 7423 df-oprab 7424 df-mpo 7425 df-om 7871 df-1st 7993 df-2nd 7994 df-frecs 8286 df-wrecs 8317 df-recs 8391 df-rdg 8430 df-1o 8486 df-er 8724 df-map 8846 df-pm 8847 df-en 8964 df-dom 8965 df-sdom 8966 df-fin 8967 df-card 9962 df-pnf 11280 df-mnf 11281 df-xr 11282 df-ltxr 11283 df-le 11284 df-sub 11476 df-neg 11477 df-nn 12243 df-2 12305 df-3 12306 df-n0 12503 df-z 12589 df-uz 12853 df-fz 13517 df-fzo 13660 df-hash 14322 df-word 14497 df-concat 14553 df-s1 14578 df-s2 14831 df-s3 14832 df-trkgc 28251 df-trkgcb 28253 df-trkg 28256 df-cgrg 28314 df-eqlg 28669 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |