![]() |
Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > k0004val | Structured version Visualization version GIF version |
Description: The topological simplex of dimension 𝑁 is the set of real vectors where the components are nonnegative and sum to 1. (Contributed by RP, 29-Mar-2021.) |
Ref | Expression |
---|---|
k0004.a | ⊢ 𝐴 = (𝑛 ∈ ℕ0 ↦ {𝑡 ∈ ((0[,]1) ↑m (1...(𝑛 + 1))) ∣ Σ𝑘 ∈ (1...(𝑛 + 1))(𝑡‘𝑘) = 1}) |
Ref | Expression |
---|---|
k0004val | ⊢ (𝑁 ∈ ℕ0 → (𝐴‘𝑁) = {𝑡 ∈ ((0[,]1) ↑m (1...(𝑁 + 1))) ∣ Σ𝑘 ∈ (1...(𝑁 + 1))(𝑡‘𝑘) = 1}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq1 7422 | . . . . 5 ⊢ (𝑛 = 𝑁 → (𝑛 + 1) = (𝑁 + 1)) | |
2 | 1 | oveq2d 7431 | . . . 4 ⊢ (𝑛 = 𝑁 → (1...(𝑛 + 1)) = (1...(𝑁 + 1))) |
3 | 2 | oveq2d 7431 | . . 3 ⊢ (𝑛 = 𝑁 → ((0[,]1) ↑m (1...(𝑛 + 1))) = ((0[,]1) ↑m (1...(𝑁 + 1)))) |
4 | 2 | sumeq1d 15678 | . . . 4 ⊢ (𝑛 = 𝑁 → Σ𝑘 ∈ (1...(𝑛 + 1))(𝑡‘𝑘) = Σ𝑘 ∈ (1...(𝑁 + 1))(𝑡‘𝑘)) |
5 | 4 | eqeq1d 2727 | . . 3 ⊢ (𝑛 = 𝑁 → (Σ𝑘 ∈ (1...(𝑛 + 1))(𝑡‘𝑘) = 1 ↔ Σ𝑘 ∈ (1...(𝑁 + 1))(𝑡‘𝑘) = 1)) |
6 | 3, 5 | rabeqbidv 3438 | . 2 ⊢ (𝑛 = 𝑁 → {𝑡 ∈ ((0[,]1) ↑m (1...(𝑛 + 1))) ∣ Σ𝑘 ∈ (1...(𝑛 + 1))(𝑡‘𝑘) = 1} = {𝑡 ∈ ((0[,]1) ↑m (1...(𝑁 + 1))) ∣ Σ𝑘 ∈ (1...(𝑁 + 1))(𝑡‘𝑘) = 1}) |
7 | k0004.a | . 2 ⊢ 𝐴 = (𝑛 ∈ ℕ0 ↦ {𝑡 ∈ ((0[,]1) ↑m (1...(𝑛 + 1))) ∣ Σ𝑘 ∈ (1...(𝑛 + 1))(𝑡‘𝑘) = 1}) | |
8 | ovex 7448 | . . 3 ⊢ ((0[,]1) ↑m (1...(𝑁 + 1))) ∈ V | |
9 | 8 | rabex 5327 | . 2 ⊢ {𝑡 ∈ ((0[,]1) ↑m (1...(𝑁 + 1))) ∣ Σ𝑘 ∈ (1...(𝑁 + 1))(𝑡‘𝑘) = 1} ∈ V |
10 | 6, 7, 9 | fvmpt 6999 | 1 ⊢ (𝑁 ∈ ℕ0 → (𝐴‘𝑁) = {𝑡 ∈ ((0[,]1) ↑m (1...(𝑁 + 1))) ∣ Σ𝑘 ∈ (1...(𝑁 + 1))(𝑡‘𝑘) = 1}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1533 ∈ wcel 2098 {crab 3420 ↦ cmpt 5224 ‘cfv 6542 (class class class)co 7415 ↑m cmap 8842 0cc0 11137 1c1 11138 + caddc 11140 ℕ0cn0 12501 [,]cicc 13358 ...cfz 13515 Σcsu 15663 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-sep 5292 ax-nul 5299 ax-pr 5422 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2932 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3465 df-dif 3942 df-un 3944 df-in 3946 df-ss 3956 df-nul 4317 df-if 4523 df-sn 4623 df-pr 4625 df-op 4629 df-uni 4902 df-br 5142 df-opab 5204 df-mpt 5225 df-id 5569 df-xp 5677 df-rel 5678 df-cnv 5679 df-co 5680 df-dm 5681 df-rn 5682 df-res 5683 df-ima 5684 df-pred 6299 df-iota 6494 df-fun 6544 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-ov 7418 df-oprab 7419 df-mpo 7420 df-frecs 8284 df-wrecs 8315 df-recs 8389 df-rdg 8428 df-seq 13998 df-sum 15664 |
This theorem is referenced by: k0004ss1 43619 k0004val0 43622 |
Copyright terms: Public domain | W3C validator |