![]() |
Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > k0004val0 | Structured version Visualization version GIF version |
Description: The topological simplex of dimension 0 is a singleton. (Contributed by RP, 2-Apr-2021.) |
Ref | Expression |
---|---|
k0004.a | ⊢ 𝐴 = (𝑛 ∈ ℕ0 ↦ {𝑡 ∈ ((0[,]1) ↑m (1...(𝑛 + 1))) ∣ Σ𝑘 ∈ (1...(𝑛 + 1))(𝑡‘𝑘) = 1}) |
Ref | Expression |
---|---|
k0004val0 | ⊢ (𝐴‘0) = {{〈1, 1〉}} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0nn0 12518 | . . 3 ⊢ 0 ∈ ℕ0 | |
2 | k0004.a | . . . 4 ⊢ 𝐴 = (𝑛 ∈ ℕ0 ↦ {𝑡 ∈ ((0[,]1) ↑m (1...(𝑛 + 1))) ∣ Σ𝑘 ∈ (1...(𝑛 + 1))(𝑡‘𝑘) = 1}) | |
3 | 2 | k0004val 43580 | . . 3 ⊢ (0 ∈ ℕ0 → (𝐴‘0) = {𝑡 ∈ ((0[,]1) ↑m (1...(0 + 1))) ∣ Σ𝑘 ∈ (1...(0 + 1))(𝑡‘𝑘) = 1}) |
4 | 1, 3 | ax-mp 5 | . 2 ⊢ (𝐴‘0) = {𝑡 ∈ ((0[,]1) ↑m (1...(0 + 1))) ∣ Σ𝑘 ∈ (1...(0 + 1))(𝑡‘𝑘) = 1} |
5 | 0p1e1 12365 | . . . . . . . 8 ⊢ (0 + 1) = 1 | |
6 | 5 | oveq2i 7431 | . . . . . . 7 ⊢ (1...(0 + 1)) = (1...1) |
7 | 1z 12623 | . . . . . . . 8 ⊢ 1 ∈ ℤ | |
8 | fzsn 13576 | . . . . . . . 8 ⊢ (1 ∈ ℤ → (1...1) = {1}) | |
9 | 7, 8 | ax-mp 5 | . . . . . . 7 ⊢ (1...1) = {1} |
10 | 6, 9 | eqtri 2756 | . . . . . 6 ⊢ (1...(0 + 1)) = {1} |
11 | 10 | oveq2i 7431 | . . . . 5 ⊢ ((0[,]1) ↑m (1...(0 + 1))) = ((0[,]1) ↑m {1}) |
12 | 11 | rabeqi 3442 | . . . 4 ⊢ {𝑡 ∈ ((0[,]1) ↑m (1...(0 + 1))) ∣ Σ𝑘 ∈ (1...(0 + 1))(𝑡‘𝑘) = 1} = {𝑡 ∈ ((0[,]1) ↑m {1}) ∣ Σ𝑘 ∈ (1...(0 + 1))(𝑡‘𝑘) = 1} |
13 | 10 | sumeq1i 15677 | . . . . . . 7 ⊢ Σ𝑘 ∈ (1...(0 + 1))(𝑡‘𝑘) = Σ𝑘 ∈ {1} (𝑡‘𝑘) |
14 | elmapi 8868 | . . . . . . . . 9 ⊢ (𝑡 ∈ ((0[,]1) ↑m {1}) → 𝑡:{1}⟶(0[,]1)) | |
15 | fsn2g 7147 | . . . . . . . . . . 11 ⊢ (1 ∈ ℤ → (𝑡:{1}⟶(0[,]1) ↔ ((𝑡‘1) ∈ (0[,]1) ∧ 𝑡 = {〈1, (𝑡‘1)〉}))) | |
16 | 7, 15 | ax-mp 5 | . . . . . . . . . 10 ⊢ (𝑡:{1}⟶(0[,]1) ↔ ((𝑡‘1) ∈ (0[,]1) ∧ 𝑡 = {〈1, (𝑡‘1)〉})) |
17 | 16 | biimpi 215 | . . . . . . . . 9 ⊢ (𝑡:{1}⟶(0[,]1) → ((𝑡‘1) ∈ (0[,]1) ∧ 𝑡 = {〈1, (𝑡‘1)〉})) |
18 | unitssre 13509 | . . . . . . . . . . . 12 ⊢ (0[,]1) ⊆ ℝ | |
19 | ax-resscn 11196 | . . . . . . . . . . . 12 ⊢ ℝ ⊆ ℂ | |
20 | 18, 19 | sstri 3989 | . . . . . . . . . . 11 ⊢ (0[,]1) ⊆ ℂ |
21 | 20 | sseli 3976 | . . . . . . . . . 10 ⊢ ((𝑡‘1) ∈ (0[,]1) → (𝑡‘1) ∈ ℂ) |
22 | 21 | adantr 480 | . . . . . . . . 9 ⊢ (((𝑡‘1) ∈ (0[,]1) ∧ 𝑡 = {〈1, (𝑡‘1)〉}) → (𝑡‘1) ∈ ℂ) |
23 | 14, 17, 22 | 3syl 18 | . . . . . . . 8 ⊢ (𝑡 ∈ ((0[,]1) ↑m {1}) → (𝑡‘1) ∈ ℂ) |
24 | fveq2 6897 | . . . . . . . . 9 ⊢ (𝑘 = 1 → (𝑡‘𝑘) = (𝑡‘1)) | |
25 | 24 | sumsn 15725 | . . . . . . . 8 ⊢ ((1 ∈ ℤ ∧ (𝑡‘1) ∈ ℂ) → Σ𝑘 ∈ {1} (𝑡‘𝑘) = (𝑡‘1)) |
26 | 7, 23, 25 | sylancr 586 | . . . . . . 7 ⊢ (𝑡 ∈ ((0[,]1) ↑m {1}) → Σ𝑘 ∈ {1} (𝑡‘𝑘) = (𝑡‘1)) |
27 | 13, 26 | eqtrid 2780 | . . . . . 6 ⊢ (𝑡 ∈ ((0[,]1) ↑m {1}) → Σ𝑘 ∈ (1...(0 + 1))(𝑡‘𝑘) = (𝑡‘1)) |
28 | 27 | eqeq1d 2730 | . . . . 5 ⊢ (𝑡 ∈ ((0[,]1) ↑m {1}) → (Σ𝑘 ∈ (1...(0 + 1))(𝑡‘𝑘) = 1 ↔ (𝑡‘1) = 1)) |
29 | 28 | rabbiia 3433 | . . . 4 ⊢ {𝑡 ∈ ((0[,]1) ↑m {1}) ∣ Σ𝑘 ∈ (1...(0 + 1))(𝑡‘𝑘) = 1} = {𝑡 ∈ ((0[,]1) ↑m {1}) ∣ (𝑡‘1) = 1} |
30 | 12, 29 | eqtri 2756 | . . 3 ⊢ {𝑡 ∈ ((0[,]1) ↑m (1...(0 + 1))) ∣ Σ𝑘 ∈ (1...(0 + 1))(𝑡‘𝑘) = 1} = {𝑡 ∈ ((0[,]1) ↑m {1}) ∣ (𝑡‘1) = 1} |
31 | rabeqsn 4670 | . . . 4 ⊢ ({𝑡 ∈ ((0[,]1) ↑m {1}) ∣ (𝑡‘1) = 1} = {{〈1, 1〉}} ↔ ∀𝑡((𝑡 ∈ ((0[,]1) ↑m {1}) ∧ (𝑡‘1) = 1) ↔ 𝑡 = {〈1, 1〉})) | |
32 | ovex 7453 | . . . . 5 ⊢ (0[,]1) ∈ V | |
33 | 1elunit 13480 | . . . . 5 ⊢ 1 ∈ (0[,]1) | |
34 | k0004lem3 43579 | . . . . 5 ⊢ ((1 ∈ ℤ ∧ (0[,]1) ∈ V ∧ 1 ∈ (0[,]1)) → ((𝑡 ∈ ((0[,]1) ↑m {1}) ∧ (𝑡‘1) = 1) ↔ 𝑡 = {〈1, 1〉})) | |
35 | 7, 32, 33, 34 | mp3an 1458 | . . . 4 ⊢ ((𝑡 ∈ ((0[,]1) ↑m {1}) ∧ (𝑡‘1) = 1) ↔ 𝑡 = {〈1, 1〉}) |
36 | 31, 35 | mpgbir 1794 | . . 3 ⊢ {𝑡 ∈ ((0[,]1) ↑m {1}) ∣ (𝑡‘1) = 1} = {{〈1, 1〉}} |
37 | 30, 36 | eqtri 2756 | . 2 ⊢ {𝑡 ∈ ((0[,]1) ↑m (1...(0 + 1))) ∣ Σ𝑘 ∈ (1...(0 + 1))(𝑡‘𝑘) = 1} = {{〈1, 1〉}} |
38 | 4, 37 | eqtri 2756 | 1 ⊢ (𝐴‘0) = {{〈1, 1〉}} |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 395 = wceq 1534 ∈ wcel 2099 {crab 3429 Vcvv 3471 {csn 4629 〈cop 4635 ↦ cmpt 5231 ⟶wf 6544 ‘cfv 6548 (class class class)co 7420 ↑m cmap 8845 ℂcc 11137 ℝcr 11138 0cc0 11139 1c1 11140 + caddc 11142 ℕ0cn0 12503 ℤcz 12589 [,]cicc 13360 ...cfz 13517 Σcsu 15665 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5365 ax-pr 5429 ax-un 7740 ax-inf2 9665 ax-cnex 11195 ax-resscn 11196 ax-1cn 11197 ax-icn 11198 ax-addcl 11199 ax-addrcl 11200 ax-mulcl 11201 ax-mulrcl 11202 ax-mulcom 11203 ax-addass 11204 ax-mulass 11205 ax-distr 11206 ax-i2m1 11207 ax-1ne0 11208 ax-1rid 11209 ax-rnegex 11210 ax-rrecex 11211 ax-cnre 11212 ax-pre-lttri 11213 ax-pre-lttrn 11214 ax-pre-ltadd 11215 ax-pre-mulgt0 11216 ax-pre-sup 11217 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-rmo 3373 df-reu 3374 df-rab 3430 df-v 3473 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4909 df-int 4950 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5576 df-eprel 5582 df-po 5590 df-so 5591 df-fr 5633 df-se 5634 df-we 5635 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-pred 6305 df-ord 6372 df-on 6373 df-lim 6374 df-suc 6375 df-iota 6500 df-fun 6550 df-fn 6551 df-f 6552 df-f1 6553 df-fo 6554 df-f1o 6555 df-fv 6556 df-isom 6557 df-riota 7376 df-ov 7423 df-oprab 7424 df-mpo 7425 df-om 7871 df-1st 7993 df-2nd 7994 df-frecs 8287 df-wrecs 8318 df-recs 8392 df-rdg 8431 df-1o 8487 df-er 8725 df-map 8847 df-en 8965 df-dom 8966 df-sdom 8967 df-fin 8968 df-sup 9466 df-oi 9534 df-card 9963 df-pnf 11281 df-mnf 11282 df-xr 11283 df-ltxr 11284 df-le 11285 df-sub 11477 df-neg 11478 df-div 11903 df-nn 12244 df-2 12306 df-3 12307 df-n0 12504 df-z 12590 df-uz 12854 df-rp 13008 df-icc 13364 df-fz 13518 df-fzo 13661 df-seq 14000 df-exp 14060 df-hash 14323 df-cj 15079 df-re 15080 df-im 15081 df-sqrt 15215 df-abs 15216 df-clim 15465 df-sum 15666 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |