![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 1elunit | Structured version Visualization version GIF version |
Description: One is an element of the closed unit interval. (Contributed by Scott Fenton, 11-Jun-2013.) |
Ref | Expression |
---|---|
1elunit | ⊢ 1 ∈ (0[,]1) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1re 11244 | . 2 ⊢ 1 ∈ ℝ | |
2 | 0le1 11767 | . 2 ⊢ 0 ≤ 1 | |
3 | 1le1 11872 | . 2 ⊢ 1 ≤ 1 | |
4 | elicc01 13475 | . 2 ⊢ (1 ∈ (0[,]1) ↔ (1 ∈ ℝ ∧ 0 ≤ 1 ∧ 1 ≤ 1)) | |
5 | 1, 2, 3, 4 | mpbir3an 1339 | 1 ⊢ 1 ∈ (0[,]1) |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2099 class class class wbr 5148 (class class class)co 7420 ℝcr 11137 0cc0 11138 1c1 11139 ≤ cle 11279 [,]cicc 13359 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-sep 5299 ax-nul 5306 ax-pow 5365 ax-pr 5429 ax-un 7740 ax-cnex 11194 ax-resscn 11195 ax-1cn 11196 ax-icn 11197 ax-addcl 11198 ax-addrcl 11199 ax-mulcl 11200 ax-mulrcl 11201 ax-mulcom 11202 ax-addass 11203 ax-mulass 11204 ax-distr 11205 ax-i2m1 11206 ax-1ne0 11207 ax-1rid 11208 ax-rnegex 11209 ax-rrecex 11210 ax-cnre 11211 ax-pre-lttri 11212 ax-pre-lttrn 11213 ax-pre-ltadd 11214 ax-pre-mulgt0 11215 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-reu 3374 df-rab 3430 df-v 3473 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4909 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5576 df-po 5590 df-so 5591 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-iota 6500 df-fun 6550 df-fn 6551 df-f 6552 df-f1 6553 df-fo 6554 df-f1o 6555 df-fv 6556 df-riota 7376 df-ov 7423 df-oprab 7424 df-mpo 7425 df-er 8724 df-en 8964 df-dom 8965 df-sdom 8966 df-pnf 11280 df-mnf 11281 df-xr 11282 df-ltxr 11283 df-le 11284 df-sub 11476 df-neg 11477 df-icc 13363 |
This theorem is referenced by: iccpnfcnv 24868 htpycom 24901 htpyid 24902 htpyco1 24903 htpyco2 24904 htpycc 24905 phtpy01 24910 phtpycom 24913 phtpyid 24914 phtpyco2 24915 phtpycc 24916 reparphti 24922 reparphtiOLD 24923 pco1 24941 pcohtpylem 24945 pcoptcl 24947 pcopt 24948 pcopt2 24949 pcoass 24950 pcorevcl 24951 pcorevlem 24952 pi1xfrf 24979 pi1xfr 24981 pi1xfrcnvlem 24982 pi1xfrcnv 24983 pi1cof 24985 pi1coghm 24987 dvlipcn 25926 leibpi 26873 lgamgulmlem2 26961 ttgcontlem1 28694 axpaschlem 28750 iistmd 33503 xrge0iif1 33539 xrge0iifmhm 33540 cnpconn 34840 pconnconn 34841 txpconn 34842 ptpconn 34843 indispconn 34844 connpconn 34845 txsconnlem 34850 txsconn 34851 cvxpconn 34852 cvxsconn 34853 cvmliftphtlem 34927 cvmlift3lem2 34930 cvmlift3lem4 34932 cvmlift3lem5 34933 cvmlift3lem6 34934 cvmlift3lem9 34937 lcmineqlem12 41511 k0004val0 43584 |
Copyright terms: Public domain | W3C validator |