![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 1le1 | Structured version Visualization version GIF version |
Description: One is less than or equal to one. (Contributed by David A. Wheeler, 16-Jul-2016.) |
Ref | Expression |
---|---|
1le1 | ⊢ 1 ≤ 1 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1re 11244 | . 2 ⊢ 1 ∈ ℝ | |
2 | 1 | leidi 11778 | 1 ⊢ 1 ≤ 1 |
Colors of variables: wff setvar class |
Syntax hints: class class class wbr 5148 1c1 11139 ≤ cle 11279 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-sep 5299 ax-nul 5306 ax-pow 5365 ax-pr 5429 ax-un 7740 ax-resscn 11195 ax-1cn 11196 ax-icn 11197 ax-addcl 11198 ax-mulcl 11200 ax-mulrcl 11201 ax-i2m1 11206 ax-1ne0 11207 ax-rrecex 11210 ax-cnre 11211 ax-pre-lttri 11212 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-rab 3430 df-v 3473 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4909 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5576 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-iota 6500 df-fun 6550 df-fn 6551 df-f 6552 df-f1 6553 df-fo 6554 df-f1o 6555 df-fv 6556 df-ov 7423 df-er 8724 df-en 8964 df-dom 8965 df-sdom 8966 df-pnf 11280 df-mnf 11281 df-xr 11282 df-ltxr 11283 df-le 11284 |
This theorem is referenced by: nnge1 12270 1elunit 13479 fldiv4p1lem1div2 13832 expge1 14096 leexp1a 14171 bernneq 14223 faclbnd3 14283 facubnd 14291 hashsnle1 14408 wrdlen1 14536 wrdl1exs1 14595 fprodge1 15971 cos1bnd 16163 sincos1sgn 16169 eirrlem 16180 xrhmeo 24870 pcoval2 24942 pige3ALT 26453 cxplea 26629 cxple2a 26632 cxpaddlelem 26685 abscxpbnd 26687 mule1 27079 sqff1o 27113 logfacbnd3 27155 logexprlim 27157 dchrabs2 27194 bposlem5 27220 zabsle1 27228 lgslem2 27230 lgsfcl2 27235 lgseisen 27311 dchrisum0flblem1 27440 log2sumbnd 27476 clwwlknon1le1 29910 nmopun 31823 branmfn 31914 stge1i 32047 dstfrvunirn 34094 subfaclim 34798 sticksstones12a 41629 jm2.17a 42381 jm2.17b 42382 fmuldfeq 44971 stoweidlem3 45391 stoweidlem18 45406 sepfsepc 47946 seppcld 47948 |
Copyright terms: Public domain | W3C validator |