Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  jm2.17b Structured version   Visualization version   GIF version

Theorem jm2.17b 42376
Description: Weak form of the second half of lemma 2.17 of [JonesMatijasevic] p. 696, allowing induction to start lower. (Contributed by Stefan O'Rear, 15-Oct-2014.)
Assertion
Ref Expression
jm2.17b ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ0) → (𝐴 Yrm (𝑁 + 1)) ≤ ((2 · 𝐴)↑𝑁))

Proof of Theorem jm2.17b
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq1 7421 . . . . . 6 (𝑎 = 0 → (𝑎 + 1) = (0 + 1))
21oveq2d 7430 . . . . 5 (𝑎 = 0 → (𝐴 Yrm (𝑎 + 1)) = (𝐴 Yrm (0 + 1)))
3 oveq2 7422 . . . . 5 (𝑎 = 0 → ((2 · 𝐴)↑𝑎) = ((2 · 𝐴)↑0))
42, 3breq12d 5155 . . . 4 (𝑎 = 0 → ((𝐴 Yrm (𝑎 + 1)) ≤ ((2 · 𝐴)↑𝑎) ↔ (𝐴 Yrm (0 + 1)) ≤ ((2 · 𝐴)↑0)))
54imbi2d 340 . . 3 (𝑎 = 0 → ((𝐴 ∈ (ℤ‘2) → (𝐴 Yrm (𝑎 + 1)) ≤ ((2 · 𝐴)↑𝑎)) ↔ (𝐴 ∈ (ℤ‘2) → (𝐴 Yrm (0 + 1)) ≤ ((2 · 𝐴)↑0))))
6 oveq1 7421 . . . . . 6 (𝑎 = 𝑏 → (𝑎 + 1) = (𝑏 + 1))
76oveq2d 7430 . . . . 5 (𝑎 = 𝑏 → (𝐴 Yrm (𝑎 + 1)) = (𝐴 Yrm (𝑏 + 1)))
8 oveq2 7422 . . . . 5 (𝑎 = 𝑏 → ((2 · 𝐴)↑𝑎) = ((2 · 𝐴)↑𝑏))
97, 8breq12d 5155 . . . 4 (𝑎 = 𝑏 → ((𝐴 Yrm (𝑎 + 1)) ≤ ((2 · 𝐴)↑𝑎) ↔ (𝐴 Yrm (𝑏 + 1)) ≤ ((2 · 𝐴)↑𝑏)))
109imbi2d 340 . . 3 (𝑎 = 𝑏 → ((𝐴 ∈ (ℤ‘2) → (𝐴 Yrm (𝑎 + 1)) ≤ ((2 · 𝐴)↑𝑎)) ↔ (𝐴 ∈ (ℤ‘2) → (𝐴 Yrm (𝑏 + 1)) ≤ ((2 · 𝐴)↑𝑏))))
11 oveq1 7421 . . . . . 6 (𝑎 = (𝑏 + 1) → (𝑎 + 1) = ((𝑏 + 1) + 1))
1211oveq2d 7430 . . . . 5 (𝑎 = (𝑏 + 1) → (𝐴 Yrm (𝑎 + 1)) = (𝐴 Yrm ((𝑏 + 1) + 1)))
13 oveq2 7422 . . . . 5 (𝑎 = (𝑏 + 1) → ((2 · 𝐴)↑𝑎) = ((2 · 𝐴)↑(𝑏 + 1)))
1412, 13breq12d 5155 . . . 4 (𝑎 = (𝑏 + 1) → ((𝐴 Yrm (𝑎 + 1)) ≤ ((2 · 𝐴)↑𝑎) ↔ (𝐴 Yrm ((𝑏 + 1) + 1)) ≤ ((2 · 𝐴)↑(𝑏 + 1))))
1514imbi2d 340 . . 3 (𝑎 = (𝑏 + 1) → ((𝐴 ∈ (ℤ‘2) → (𝐴 Yrm (𝑎 + 1)) ≤ ((2 · 𝐴)↑𝑎)) ↔ (𝐴 ∈ (ℤ‘2) → (𝐴 Yrm ((𝑏 + 1) + 1)) ≤ ((2 · 𝐴)↑(𝑏 + 1)))))
16 oveq1 7421 . . . . . 6 (𝑎 = 𝑁 → (𝑎 + 1) = (𝑁 + 1))
1716oveq2d 7430 . . . . 5 (𝑎 = 𝑁 → (𝐴 Yrm (𝑎 + 1)) = (𝐴 Yrm (𝑁 + 1)))
18 oveq2 7422 . . . . 5 (𝑎 = 𝑁 → ((2 · 𝐴)↑𝑎) = ((2 · 𝐴)↑𝑁))
1917, 18breq12d 5155 . . . 4 (𝑎 = 𝑁 → ((𝐴 Yrm (𝑎 + 1)) ≤ ((2 · 𝐴)↑𝑎) ↔ (𝐴 Yrm (𝑁 + 1)) ≤ ((2 · 𝐴)↑𝑁)))
2019imbi2d 340 . . 3 (𝑎 = 𝑁 → ((𝐴 ∈ (ℤ‘2) → (𝐴 Yrm (𝑎 + 1)) ≤ ((2 · 𝐴)↑𝑎)) ↔ (𝐴 ∈ (ℤ‘2) → (𝐴 Yrm (𝑁 + 1)) ≤ ((2 · 𝐴)↑𝑁))))
21 1le1 11866 . . . 4 1 ≤ 1
22 0p1e1 12358 . . . . . . 7 (0 + 1) = 1
2322oveq2i 7425 . . . . . 6 (𝐴 Yrm (0 + 1)) = (𝐴 Yrm 1)
24 rmy1 42345 . . . . . 6 (𝐴 ∈ (ℤ‘2) → (𝐴 Yrm 1) = 1)
2523, 24eqtrid 2780 . . . . 5 (𝐴 ∈ (ℤ‘2) → (𝐴 Yrm (0 + 1)) = 1)
26 2re 12310 . . . . . . . 8 2 ∈ ℝ
27 eluzelre 12857 . . . . . . . 8 (𝐴 ∈ (ℤ‘2) → 𝐴 ∈ ℝ)
28 remulcl 11217 . . . . . . . 8 ((2 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (2 · 𝐴) ∈ ℝ)
2926, 27, 28sylancr 586 . . . . . . 7 (𝐴 ∈ (ℤ‘2) → (2 · 𝐴) ∈ ℝ)
3029recnd 11266 . . . . . 6 (𝐴 ∈ (ℤ‘2) → (2 · 𝐴) ∈ ℂ)
3130exp0d 14130 . . . . 5 (𝐴 ∈ (ℤ‘2) → ((2 · 𝐴)↑0) = 1)
3225, 31breq12d 5155 . . . 4 (𝐴 ∈ (ℤ‘2) → ((𝐴 Yrm (0 + 1)) ≤ ((2 · 𝐴)↑0) ↔ 1 ≤ 1))
3321, 32mpbiri 258 . . 3 (𝐴 ∈ (ℤ‘2) → (𝐴 Yrm (0 + 1)) ≤ ((2 · 𝐴)↑0))
34 simpr 484 . . . . . . . . 9 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2)) → 𝐴 ∈ (ℤ‘2))
35 nn0z 12607 . . . . . . . . . . 11 (𝑏 ∈ ℕ0𝑏 ∈ ℤ)
3635adantr 480 . . . . . . . . . 10 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2)) → 𝑏 ∈ ℤ)
3736peano2zd 12693 . . . . . . . . 9 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2)) → (𝑏 + 1) ∈ ℤ)
38 rmyluc2 42353 . . . . . . . . 9 ((𝐴 ∈ (ℤ‘2) ∧ (𝑏 + 1) ∈ ℤ) → (𝐴 Yrm ((𝑏 + 1) + 1)) = (((2 · 𝐴) · (𝐴 Yrm (𝑏 + 1))) − (𝐴 Yrm ((𝑏 + 1) − 1))))
3934, 37, 38syl2anc 583 . . . . . . . 8 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2)) → (𝐴 Yrm ((𝑏 + 1) + 1)) = (((2 · 𝐴) · (𝐴 Yrm (𝑏 + 1))) − (𝐴 Yrm ((𝑏 + 1) − 1))))
40 rmxypos 42362 . . . . . . . . . . . 12 ((𝐴 ∈ (ℤ‘2) ∧ 𝑏 ∈ ℕ0) → (0 < (𝐴 Xrm 𝑏) ∧ 0 ≤ (𝐴 Yrm 𝑏)))
4140simprd 495 . . . . . . . . . . 11 ((𝐴 ∈ (ℤ‘2) ∧ 𝑏 ∈ ℕ0) → 0 ≤ (𝐴 Yrm 𝑏))
4241ancoms 458 . . . . . . . . . 10 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2)) → 0 ≤ (𝐴 Yrm 𝑏))
43 nn0re 12505 . . . . . . . . . . . . . 14 (𝑏 ∈ ℕ0𝑏 ∈ ℝ)
4443adantr 480 . . . . . . . . . . . . 13 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2)) → 𝑏 ∈ ℝ)
4544recnd 11266 . . . . . . . . . . . 12 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2)) → 𝑏 ∈ ℂ)
46 ax-1cn 11190 . . . . . . . . . . . 12 1 ∈ ℂ
47 pncan 11490 . . . . . . . . . . . 12 ((𝑏 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑏 + 1) − 1) = 𝑏)
4845, 46, 47sylancl 585 . . . . . . . . . . 11 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2)) → ((𝑏 + 1) − 1) = 𝑏)
4948oveq2d 7430 . . . . . . . . . 10 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2)) → (𝐴 Yrm ((𝑏 + 1) − 1)) = (𝐴 Yrm 𝑏))
5042, 49breqtrrd 5170 . . . . . . . . 9 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2)) → 0 ≤ (𝐴 Yrm ((𝑏 + 1) − 1)))
5127adantl 481 . . . . . . . . . . . 12 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2)) → 𝐴 ∈ ℝ)
5226, 51, 28sylancr 586 . . . . . . . . . . 11 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2)) → (2 · 𝐴) ∈ ℝ)
53 frmy 42329 . . . . . . . . . . . . . 14 Yrm :((ℤ‘2) × ℤ)⟶ℤ
5453fovcl 7543 . . . . . . . . . . . . 13 ((𝐴 ∈ (ℤ‘2) ∧ (𝑏 + 1) ∈ ℤ) → (𝐴 Yrm (𝑏 + 1)) ∈ ℤ)
5554zred 12690 . . . . . . . . . . . 12 ((𝐴 ∈ (ℤ‘2) ∧ (𝑏 + 1) ∈ ℤ) → (𝐴 Yrm (𝑏 + 1)) ∈ ℝ)
5634, 37, 55syl2anc 583 . . . . . . . . . . 11 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2)) → (𝐴 Yrm (𝑏 + 1)) ∈ ℝ)
5752, 56remulcld 11268 . . . . . . . . . 10 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2)) → ((2 · 𝐴) · (𝐴 Yrm (𝑏 + 1))) ∈ ℝ)
5853fovcl 7543 . . . . . . . . . . . . 13 ((𝐴 ∈ (ℤ‘2) ∧ 𝑏 ∈ ℤ) → (𝐴 Yrm 𝑏) ∈ ℤ)
5958zred 12690 . . . . . . . . . . . 12 ((𝐴 ∈ (ℤ‘2) ∧ 𝑏 ∈ ℤ) → (𝐴 Yrm 𝑏) ∈ ℝ)
6034, 36, 59syl2anc 583 . . . . . . . . . . 11 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2)) → (𝐴 Yrm 𝑏) ∈ ℝ)
6149, 60eqeltrd 2829 . . . . . . . . . 10 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2)) → (𝐴 Yrm ((𝑏 + 1) − 1)) ∈ ℝ)
6257, 61subge02d 11830 . . . . . . . . 9 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2)) → (0 ≤ (𝐴 Yrm ((𝑏 + 1) − 1)) ↔ (((2 · 𝐴) · (𝐴 Yrm (𝑏 + 1))) − (𝐴 Yrm ((𝑏 + 1) − 1))) ≤ ((2 · 𝐴) · (𝐴 Yrm (𝑏 + 1)))))
6350, 62mpbid 231 . . . . . . . 8 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2)) → (((2 · 𝐴) · (𝐴 Yrm (𝑏 + 1))) − (𝐴 Yrm ((𝑏 + 1) − 1))) ≤ ((2 · 𝐴) · (𝐴 Yrm (𝑏 + 1))))
6439, 63eqbrtrd 5164 . . . . . . 7 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2)) → (𝐴 Yrm ((𝑏 + 1) + 1)) ≤ ((2 · 𝐴) · (𝐴 Yrm (𝑏 + 1))))
65643adant3 1130 . . . . . 6 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2) ∧ (𝐴 Yrm (𝑏 + 1)) ≤ ((2 · 𝐴)↑𝑏)) → (𝐴 Yrm ((𝑏 + 1) + 1)) ≤ ((2 · 𝐴) · (𝐴 Yrm (𝑏 + 1))))
66 simpl 482 . . . . . . . . . 10 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2)) → 𝑏 ∈ ℕ0)
6752, 66reexpcld 14153 . . . . . . . . 9 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2)) → ((2 · 𝐴)↑𝑏) ∈ ℝ)
68 2nn 12309 . . . . . . . . . . . 12 2 ∈ ℕ
69 eluz2nn 12892 . . . . . . . . . . . 12 (𝐴 ∈ (ℤ‘2) → 𝐴 ∈ ℕ)
70 nnmulcl 12260 . . . . . . . . . . . 12 ((2 ∈ ℕ ∧ 𝐴 ∈ ℕ) → (2 · 𝐴) ∈ ℕ)
7168, 69, 70sylancr 586 . . . . . . . . . . 11 (𝐴 ∈ (ℤ‘2) → (2 · 𝐴) ∈ ℕ)
7271nngt0d 12285 . . . . . . . . . 10 (𝐴 ∈ (ℤ‘2) → 0 < (2 · 𝐴))
7372adantl 481 . . . . . . . . 9 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2)) → 0 < (2 · 𝐴))
74 lemul2 12091 . . . . . . . . 9 (((𝐴 Yrm (𝑏 + 1)) ∈ ℝ ∧ ((2 · 𝐴)↑𝑏) ∈ ℝ ∧ ((2 · 𝐴) ∈ ℝ ∧ 0 < (2 · 𝐴))) → ((𝐴 Yrm (𝑏 + 1)) ≤ ((2 · 𝐴)↑𝑏) ↔ ((2 · 𝐴) · (𝐴 Yrm (𝑏 + 1))) ≤ ((2 · 𝐴) · ((2 · 𝐴)↑𝑏))))
7556, 67, 52, 73, 74syl112anc 1372 . . . . . . . 8 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2)) → ((𝐴 Yrm (𝑏 + 1)) ≤ ((2 · 𝐴)↑𝑏) ↔ ((2 · 𝐴) · (𝐴 Yrm (𝑏 + 1))) ≤ ((2 · 𝐴) · ((2 · 𝐴)↑𝑏))))
7675biimp3a 1466 . . . . . . 7 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2) ∧ (𝐴 Yrm (𝑏 + 1)) ≤ ((2 · 𝐴)↑𝑏)) → ((2 · 𝐴) · (𝐴 Yrm (𝑏 + 1))) ≤ ((2 · 𝐴) · ((2 · 𝐴)↑𝑏)))
7752recnd 11266 . . . . . . . . . 10 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2)) → (2 · 𝐴) ∈ ℂ)
7877, 66expp1d 14137 . . . . . . . . 9 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2)) → ((2 · 𝐴)↑(𝑏 + 1)) = (((2 · 𝐴)↑𝑏) · (2 · 𝐴)))
7967recnd 11266 . . . . . . . . . 10 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2)) → ((2 · 𝐴)↑𝑏) ∈ ℂ)
8079, 77mulcomd 11259 . . . . . . . . 9 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2)) → (((2 · 𝐴)↑𝑏) · (2 · 𝐴)) = ((2 · 𝐴) · ((2 · 𝐴)↑𝑏)))
8178, 80eqtrd 2768 . . . . . . . 8 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2)) → ((2 · 𝐴)↑(𝑏 + 1)) = ((2 · 𝐴) · ((2 · 𝐴)↑𝑏)))
82813adant3 1130 . . . . . . 7 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2) ∧ (𝐴 Yrm (𝑏 + 1)) ≤ ((2 · 𝐴)↑𝑏)) → ((2 · 𝐴)↑(𝑏 + 1)) = ((2 · 𝐴) · ((2 · 𝐴)↑𝑏)))
8376, 82breqtrrd 5170 . . . . . 6 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2) ∧ (𝐴 Yrm (𝑏 + 1)) ≤ ((2 · 𝐴)↑𝑏)) → ((2 · 𝐴) · (𝐴 Yrm (𝑏 + 1))) ≤ ((2 · 𝐴)↑(𝑏 + 1)))
8437peano2zd 12693 . . . . . . . . 9 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2)) → ((𝑏 + 1) + 1) ∈ ℤ)
8553fovcl 7543 . . . . . . . . . 10 ((𝐴 ∈ (ℤ‘2) ∧ ((𝑏 + 1) + 1) ∈ ℤ) → (𝐴 Yrm ((𝑏 + 1) + 1)) ∈ ℤ)
8685zred 12690 . . . . . . . . 9 ((𝐴 ∈ (ℤ‘2) ∧ ((𝑏 + 1) + 1) ∈ ℤ) → (𝐴 Yrm ((𝑏 + 1) + 1)) ∈ ℝ)
8734, 84, 86syl2anc 583 . . . . . . . 8 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2)) → (𝐴 Yrm ((𝑏 + 1) + 1)) ∈ ℝ)
88 peano2nn0 12536 . . . . . . . . . 10 (𝑏 ∈ ℕ0 → (𝑏 + 1) ∈ ℕ0)
8988adantr 480 . . . . . . . . 9 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2)) → (𝑏 + 1) ∈ ℕ0)
9052, 89reexpcld 14153 . . . . . . . 8 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2)) → ((2 · 𝐴)↑(𝑏 + 1)) ∈ ℝ)
91 letr 11332 . . . . . . . 8 (((𝐴 Yrm ((𝑏 + 1) + 1)) ∈ ℝ ∧ ((2 · 𝐴) · (𝐴 Yrm (𝑏 + 1))) ∈ ℝ ∧ ((2 · 𝐴)↑(𝑏 + 1)) ∈ ℝ) → (((𝐴 Yrm ((𝑏 + 1) + 1)) ≤ ((2 · 𝐴) · (𝐴 Yrm (𝑏 + 1))) ∧ ((2 · 𝐴) · (𝐴 Yrm (𝑏 + 1))) ≤ ((2 · 𝐴)↑(𝑏 + 1))) → (𝐴 Yrm ((𝑏 + 1) + 1)) ≤ ((2 · 𝐴)↑(𝑏 + 1))))
9287, 57, 90, 91syl3anc 1369 . . . . . . 7 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2)) → (((𝐴 Yrm ((𝑏 + 1) + 1)) ≤ ((2 · 𝐴) · (𝐴 Yrm (𝑏 + 1))) ∧ ((2 · 𝐴) · (𝐴 Yrm (𝑏 + 1))) ≤ ((2 · 𝐴)↑(𝑏 + 1))) → (𝐴 Yrm ((𝑏 + 1) + 1)) ≤ ((2 · 𝐴)↑(𝑏 + 1))))
93923adant3 1130 . . . . . 6 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2) ∧ (𝐴 Yrm (𝑏 + 1)) ≤ ((2 · 𝐴)↑𝑏)) → (((𝐴 Yrm ((𝑏 + 1) + 1)) ≤ ((2 · 𝐴) · (𝐴 Yrm (𝑏 + 1))) ∧ ((2 · 𝐴) · (𝐴 Yrm (𝑏 + 1))) ≤ ((2 · 𝐴)↑(𝑏 + 1))) → (𝐴 Yrm ((𝑏 + 1) + 1)) ≤ ((2 · 𝐴)↑(𝑏 + 1))))
9465, 83, 93mp2and 698 . . . . 5 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2) ∧ (𝐴 Yrm (𝑏 + 1)) ≤ ((2 · 𝐴)↑𝑏)) → (𝐴 Yrm ((𝑏 + 1) + 1)) ≤ ((2 · 𝐴)↑(𝑏 + 1)))
95943exp 1117 . . . 4 (𝑏 ∈ ℕ0 → (𝐴 ∈ (ℤ‘2) → ((𝐴 Yrm (𝑏 + 1)) ≤ ((2 · 𝐴)↑𝑏) → (𝐴 Yrm ((𝑏 + 1) + 1)) ≤ ((2 · 𝐴)↑(𝑏 + 1)))))
9695a2d 29 . . 3 (𝑏 ∈ ℕ0 → ((𝐴 ∈ (ℤ‘2) → (𝐴 Yrm (𝑏 + 1)) ≤ ((2 · 𝐴)↑𝑏)) → (𝐴 ∈ (ℤ‘2) → (𝐴 Yrm ((𝑏 + 1) + 1)) ≤ ((2 · 𝐴)↑(𝑏 + 1)))))
975, 10, 15, 20, 33, 96nn0ind 12681 . 2 (𝑁 ∈ ℕ0 → (𝐴 ∈ (ℤ‘2) → (𝐴 Yrm (𝑁 + 1)) ≤ ((2 · 𝐴)↑𝑁)))
9897impcom 407 1 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ0) → (𝐴 Yrm (𝑁 + 1)) ≤ ((2 · 𝐴)↑𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1085   = wceq 1534  wcel 2099   class class class wbr 5142  cfv 6542  (class class class)co 7414  cc 11130  cr 11131  0cc0 11132  1c1 11133   + caddc 11135   · cmul 11137   < clt 11272  cle 11273  cmin 11468  cn 12236  2c2 12291  0cn0 12496  cz 12582  cuz 12846  cexp 14052   Xrm crmx 42314   Yrm crmy 42315
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-rep 5279  ax-sep 5293  ax-nul 5300  ax-pow 5359  ax-pr 5423  ax-un 7734  ax-inf2 9658  ax-cnex 11188  ax-resscn 11189  ax-1cn 11190  ax-icn 11191  ax-addcl 11192  ax-addrcl 11193  ax-mulcl 11194  ax-mulrcl 11195  ax-mulcom 11196  ax-addass 11197  ax-mulass 11198  ax-distr 11199  ax-i2m1 11200  ax-1ne0 11201  ax-1rid 11202  ax-rnegex 11203  ax-rrecex 11204  ax-cnre 11205  ax-pre-lttri 11206  ax-pre-lttrn 11207  ax-pre-ltadd 11208  ax-pre-mulgt0 11209  ax-pre-sup 11210  ax-addf 11211
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2937  df-nel 3043  df-ral 3058  df-rex 3067  df-rmo 3372  df-reu 3373  df-rab 3429  df-v 3472  df-sbc 3776  df-csb 3891  df-dif 3948  df-un 3950  df-in 3952  df-ss 3962  df-pss 3964  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-tp 4629  df-op 4631  df-uni 4904  df-int 4945  df-iun 4993  df-iin 4994  df-br 5143  df-opab 5205  df-mpt 5226  df-tr 5260  df-id 5570  df-eprel 5576  df-po 5584  df-so 5585  df-fr 5627  df-se 5628  df-we 5629  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-pred 6299  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-isom 6551  df-riota 7370  df-ov 7417  df-oprab 7418  df-mpo 7419  df-of 7679  df-om 7865  df-1st 7987  df-2nd 7988  df-supp 8160  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-2o 8481  df-oadd 8484  df-omul 8485  df-er 8718  df-map 8840  df-pm 8841  df-ixp 8910  df-en 8958  df-dom 8959  df-sdom 8960  df-fin 8961  df-fsupp 9380  df-fi 9428  df-sup 9459  df-inf 9460  df-oi 9527  df-card 9956  df-acn 9959  df-pnf 11274  df-mnf 11275  df-xr 11276  df-ltxr 11277  df-le 11278  df-sub 11470  df-neg 11471  df-div 11896  df-nn 12237  df-2 12299  df-3 12300  df-4 12301  df-5 12302  df-6 12303  df-7 12304  df-8 12305  df-9 12306  df-n0 12497  df-xnn0 12569  df-z 12583  df-dec 12702  df-uz 12847  df-q 12957  df-rp 13001  df-xneg 13118  df-xadd 13119  df-xmul 13120  df-ioo 13354  df-ioc 13355  df-ico 13356  df-icc 13357  df-fz 13511  df-fzo 13654  df-fl 13783  df-mod 13861  df-seq 13993  df-exp 14053  df-fac 14259  df-bc 14288  df-hash 14316  df-shft 15040  df-cj 15072  df-re 15073  df-im 15074  df-sqrt 15208  df-abs 15209  df-limsup 15441  df-clim 15458  df-rlim 15459  df-sum 15659  df-ef 16037  df-sin 16039  df-cos 16040  df-pi 16042  df-dvds 16225  df-gcd 16463  df-numer 16700  df-denom 16701  df-struct 17109  df-sets 17126  df-slot 17144  df-ndx 17156  df-base 17174  df-ress 17203  df-plusg 17239  df-mulr 17240  df-starv 17241  df-sca 17242  df-vsca 17243  df-ip 17244  df-tset 17245  df-ple 17246  df-ds 17248  df-unif 17249  df-hom 17250  df-cco 17251  df-rest 17397  df-topn 17398  df-0g 17416  df-gsum 17417  df-topgen 17418  df-pt 17419  df-prds 17422  df-xrs 17477  df-qtop 17482  df-imas 17483  df-xps 17485  df-mre 17559  df-mrc 17560  df-acs 17562  df-mgm 18593  df-sgrp 18672  df-mnd 18688  df-submnd 18734  df-mulg 19017  df-cntz 19261  df-cmn 19730  df-psmet 21264  df-xmet 21265  df-met 21266  df-bl 21267  df-mopn 21268  df-fbas 21269  df-fg 21270  df-cnfld 21273  df-top 22789  df-topon 22806  df-topsp 22828  df-bases 22842  df-cld 22916  df-ntr 22917  df-cls 22918  df-nei 22995  df-lp 23033  df-perf 23034  df-cn 23124  df-cnp 23125  df-haus 23212  df-tx 23459  df-hmeo 23652  df-fil 23743  df-fm 23835  df-flim 23836  df-flf 23837  df-xms 24219  df-ms 24220  df-tms 24221  df-cncf 24791  df-limc 25788  df-dv 25789  df-log 26483  df-squarenn 42255  df-pell1qr 42256  df-pell14qr 42257  df-pell1234qr 42258  df-pellfund 42259  df-rmx 42316  df-rmy 42317
This theorem is referenced by:  jm2.17c  42377
  Copyright terms: Public domain W3C validator
OSZAR »