![]() |
Mathbox for Asger C. Ipsen |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > knoppf | Structured version Visualization version GIF version |
Description: Knopp's function is a function. (Contributed by Asger C. Ipsen, 25-Aug-2021.) |
Ref | Expression |
---|---|
knoppf.t | ⊢ 𝑇 = (𝑥 ∈ ℝ ↦ (abs‘((⌊‘(𝑥 + (1 / 2))) − 𝑥))) |
knoppf.f | ⊢ 𝐹 = (𝑦 ∈ ℝ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐶↑𝑛) · (𝑇‘(((2 · 𝑁)↑𝑛) · 𝑦))))) |
knoppf.w | ⊢ 𝑊 = (𝑤 ∈ ℝ ↦ Σ𝑖 ∈ ℕ0 ((𝐹‘𝑤)‘𝑖)) |
knoppf.c | ⊢ (𝜑 → 𝐶 ∈ (-1(,)1)) |
knoppf.n | ⊢ (𝜑 → 𝑁 ∈ ℕ) |
Ref | Expression |
---|---|
knoppf | ⊢ (𝜑 → 𝑊:ℝ⟶ℝ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nn0uz 12895 | . . 3 ⊢ ℕ0 = (ℤ≥‘0) | |
2 | 0zd 12601 | . . 3 ⊢ ((𝜑 ∧ 𝑤 ∈ ℝ) → 0 ∈ ℤ) | |
3 | eqidd 2729 | . . 3 ⊢ (((𝜑 ∧ 𝑤 ∈ ℝ) ∧ 𝑖 ∈ ℕ0) → ((𝐹‘𝑤)‘𝑖) = ((𝐹‘𝑤)‘𝑖)) | |
4 | knoppf.t | . . . 4 ⊢ 𝑇 = (𝑥 ∈ ℝ ↦ (abs‘((⌊‘(𝑥 + (1 / 2))) − 𝑥))) | |
5 | knoppf.f | . . . 4 ⊢ 𝐹 = (𝑦 ∈ ℝ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐶↑𝑛) · (𝑇‘(((2 · 𝑁)↑𝑛) · 𝑦))))) | |
6 | knoppf.n | . . . . . 6 ⊢ (𝜑 → 𝑁 ∈ ℕ) | |
7 | 6 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑤 ∈ ℝ) → 𝑁 ∈ ℕ) |
8 | 7 | adantr 480 | . . . 4 ⊢ (((𝜑 ∧ 𝑤 ∈ ℝ) ∧ 𝑖 ∈ ℕ0) → 𝑁 ∈ ℕ) |
9 | knoppf.c | . . . . . . . 8 ⊢ (𝜑 → 𝐶 ∈ (-1(,)1)) | |
10 | 9 | knoppndvlem3 35989 | . . . . . . 7 ⊢ (𝜑 → (𝐶 ∈ ℝ ∧ (abs‘𝐶) < 1)) |
11 | 10 | simpld 494 | . . . . . 6 ⊢ (𝜑 → 𝐶 ∈ ℝ) |
12 | 11 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑤 ∈ ℝ) → 𝐶 ∈ ℝ) |
13 | 12 | adantr 480 | . . . 4 ⊢ (((𝜑 ∧ 𝑤 ∈ ℝ) ∧ 𝑖 ∈ ℕ0) → 𝐶 ∈ ℝ) |
14 | simpr 484 | . . . . 5 ⊢ ((𝜑 ∧ 𝑤 ∈ ℝ) → 𝑤 ∈ ℝ) | |
15 | 14 | adantr 480 | . . . 4 ⊢ (((𝜑 ∧ 𝑤 ∈ ℝ) ∧ 𝑖 ∈ ℕ0) → 𝑤 ∈ ℝ) |
16 | simpr 484 | . . . 4 ⊢ (((𝜑 ∧ 𝑤 ∈ ℝ) ∧ 𝑖 ∈ ℕ0) → 𝑖 ∈ ℕ0) | |
17 | 4, 5, 8, 13, 15, 16 | knoppcnlem3 35970 | . . 3 ⊢ (((𝜑 ∧ 𝑤 ∈ ℝ) ∧ 𝑖 ∈ ℕ0) → ((𝐹‘𝑤)‘𝑖) ∈ ℝ) |
18 | knoppf.w | . . . . . 6 ⊢ 𝑊 = (𝑤 ∈ ℝ ↦ Σ𝑖 ∈ ℕ0 ((𝐹‘𝑤)‘𝑖)) | |
19 | fveq2 6897 | . . . . . . . . 9 ⊢ (𝑤 = 𝑧 → (𝐹‘𝑤) = (𝐹‘𝑧)) | |
20 | 19 | fveq1d 6899 | . . . . . . . 8 ⊢ (𝑤 = 𝑧 → ((𝐹‘𝑤)‘𝑖) = ((𝐹‘𝑧)‘𝑖)) |
21 | 20 | sumeq2sdv 15683 | . . . . . . 7 ⊢ (𝑤 = 𝑧 → Σ𝑖 ∈ ℕ0 ((𝐹‘𝑤)‘𝑖) = Σ𝑖 ∈ ℕ0 ((𝐹‘𝑧)‘𝑖)) |
22 | 21 | cbvmptv 5261 | . . . . . 6 ⊢ (𝑤 ∈ ℝ ↦ Σ𝑖 ∈ ℕ0 ((𝐹‘𝑤)‘𝑖)) = (𝑧 ∈ ℝ ↦ Σ𝑖 ∈ ℕ0 ((𝐹‘𝑧)‘𝑖)) |
23 | 18, 22 | eqtri 2756 | . . . . 5 ⊢ 𝑊 = (𝑧 ∈ ℝ ↦ Σ𝑖 ∈ ℕ0 ((𝐹‘𝑧)‘𝑖)) |
24 | 9 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑤 ∈ ℝ) → 𝐶 ∈ (-1(,)1)) |
25 | 4, 5, 23, 14, 24, 7 | knoppndvlem4 35990 | . . . 4 ⊢ ((𝜑 ∧ 𝑤 ∈ ℝ) → seq0( + , (𝐹‘𝑤)) ⇝ (𝑊‘𝑤)) |
26 | seqex 14001 | . . . . 5 ⊢ seq0( + , (𝐹‘𝑤)) ∈ V | |
27 | fvex 6910 | . . . . 5 ⊢ (𝑊‘𝑤) ∈ V | |
28 | 26, 27 | breldm 5911 | . . . 4 ⊢ (seq0( + , (𝐹‘𝑤)) ⇝ (𝑊‘𝑤) → seq0( + , (𝐹‘𝑤)) ∈ dom ⇝ ) |
29 | 25, 28 | syl 17 | . . 3 ⊢ ((𝜑 ∧ 𝑤 ∈ ℝ) → seq0( + , (𝐹‘𝑤)) ∈ dom ⇝ ) |
30 | 1, 2, 3, 17, 29 | isumrecl 15744 | . 2 ⊢ ((𝜑 ∧ 𝑤 ∈ ℝ) → Σ𝑖 ∈ ℕ0 ((𝐹‘𝑤)‘𝑖) ∈ ℝ) |
31 | 30, 18 | fmptd 7124 | 1 ⊢ (𝜑 → 𝑊:ℝ⟶ℝ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1534 ∈ wcel 2099 class class class wbr 5148 ↦ cmpt 5231 dom cdm 5678 ⟶wf 6544 ‘cfv 6548 (class class class)co 7420 ℝcr 11138 0cc0 11139 1c1 11140 + caddc 11142 · cmul 11144 < clt 11279 − cmin 11475 -cneg 11476 / cdiv 11902 ℕcn 12243 2c2 12298 ℕ0cn0 12503 (,)cioo 13357 ⌊cfl 13788 seqcseq 13999 ↑cexp 14059 abscabs 15214 ⇝ cli 15461 Σcsu 15665 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5365 ax-pr 5429 ax-un 7740 ax-inf2 9665 ax-cnex 11195 ax-resscn 11196 ax-1cn 11197 ax-icn 11198 ax-addcl 11199 ax-addrcl 11200 ax-mulcl 11201 ax-mulrcl 11202 ax-mulcom 11203 ax-addass 11204 ax-mulass 11205 ax-distr 11206 ax-i2m1 11207 ax-1ne0 11208 ax-1rid 11209 ax-rnegex 11210 ax-rrecex 11211 ax-cnre 11212 ax-pre-lttri 11213 ax-pre-lttrn 11214 ax-pre-ltadd 11215 ax-pre-mulgt0 11216 ax-pre-sup 11217 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-rmo 3373 df-reu 3374 df-rab 3430 df-v 3473 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4909 df-int 4950 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5576 df-eprel 5582 df-po 5590 df-so 5591 df-fr 5633 df-se 5634 df-we 5635 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-pred 6305 df-ord 6372 df-on 6373 df-lim 6374 df-suc 6375 df-iota 6500 df-fun 6550 df-fn 6551 df-f 6552 df-f1 6553 df-fo 6554 df-f1o 6555 df-fv 6556 df-isom 6557 df-riota 7376 df-ov 7423 df-oprab 7424 df-mpo 7425 df-of 7685 df-om 7871 df-1st 7993 df-2nd 7994 df-frecs 8287 df-wrecs 8318 df-recs 8392 df-rdg 8431 df-1o 8487 df-er 8725 df-map 8847 df-pm 8848 df-en 8965 df-dom 8966 df-sdom 8967 df-fin 8968 df-sup 9466 df-inf 9467 df-oi 9534 df-card 9963 df-pnf 11281 df-mnf 11282 df-xr 11283 df-ltxr 11284 df-le 11285 df-sub 11477 df-neg 11478 df-div 11903 df-nn 12244 df-2 12306 df-3 12307 df-n0 12504 df-z 12590 df-uz 12854 df-rp 13008 df-ioo 13361 df-ico 13363 df-fz 13518 df-fzo 13661 df-fl 13790 df-seq 14000 df-exp 14060 df-hash 14323 df-cj 15079 df-re 15080 df-im 15081 df-sqrt 15215 df-abs 15216 df-limsup 15448 df-clim 15465 df-rlim 15466 df-sum 15666 df-ulm 26326 |
This theorem is referenced by: knoppcn2 36011 |
Copyright terms: Public domain | W3C validator |