MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ledivp1i Structured version   Visualization version   GIF version

Theorem ledivp1i 12167
Description: "Less than or equal to" and division relation. (Lemma for computing upper bounds of products. The "+ 1" prevents division by zero.) (Contributed by NM, 17-Sep-2005.)
Hypotheses
Ref Expression
ltplus1.1 𝐴 ∈ ℝ
prodgt0.2 𝐵 ∈ ℝ
ltmul1.3 𝐶 ∈ ℝ
Assertion
Ref Expression
ledivp1i ((0 ≤ 𝐴 ∧ 0 ≤ 𝐶𝐴 ≤ (𝐵 / (𝐶 + 1))) → (𝐴 · 𝐶) ≤ 𝐵)

Proof of Theorem ledivp1i
StepHypRef Expression
1 ltplus1.1 . . . 4 𝐴 ∈ ℝ
2 ltmul1.3 . . . . 5 𝐶 ∈ ℝ
3 1re 11242 . . . . . 6 1 ∈ ℝ
42, 3readdcli 11257 . . . . 5 (𝐶 + 1) ∈ ℝ
52ltp1i 12146 . . . . . . 7 𝐶 < (𝐶 + 1)
62, 4, 5ltleii 11365 . . . . . 6 𝐶 ≤ (𝐶 + 1)
7 lemul2a 12097 . . . . . 6 (((𝐶 ∈ ℝ ∧ (𝐶 + 1) ∈ ℝ ∧ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴)) ∧ 𝐶 ≤ (𝐶 + 1)) → (𝐴 · 𝐶) ≤ (𝐴 · (𝐶 + 1)))
86, 7mpan2 689 . . . . 5 ((𝐶 ∈ ℝ ∧ (𝐶 + 1) ∈ ℝ ∧ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴)) → (𝐴 · 𝐶) ≤ (𝐴 · (𝐶 + 1)))
92, 4, 8mp3an12 1447 . . . 4 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (𝐴 · 𝐶) ≤ (𝐴 · (𝐶 + 1)))
101, 9mpan 688 . . 3 (0 ≤ 𝐴 → (𝐴 · 𝐶) ≤ (𝐴 · (𝐶 + 1)))
11103ad2ant1 1130 . 2 ((0 ≤ 𝐴 ∧ 0 ≤ 𝐶𝐴 ≤ (𝐵 / (𝐶 + 1))) → (𝐴 · 𝐶) ≤ (𝐴 · (𝐶 + 1)))
12 0re 11244 . . . . . . . 8 0 ∈ ℝ
1312, 2, 4lelttri 11369 . . . . . . 7 ((0 ≤ 𝐶𝐶 < (𝐶 + 1)) → 0 < (𝐶 + 1))
145, 13mpan2 689 . . . . . 6 (0 ≤ 𝐶 → 0 < (𝐶 + 1))
154gt0ne0i 11777 . . . . . . . . 9 (0 < (𝐶 + 1) → (𝐶 + 1) ≠ 0)
16 prodgt0.2 . . . . . . . . . 10 𝐵 ∈ ℝ
1716, 4redivclzi 12008 . . . . . . . . 9 ((𝐶 + 1) ≠ 0 → (𝐵 / (𝐶 + 1)) ∈ ℝ)
1815, 17syl 17 . . . . . . . 8 (0 < (𝐶 + 1) → (𝐵 / (𝐶 + 1)) ∈ ℝ)
19 lemul1 12094 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ (𝐵 / (𝐶 + 1)) ∈ ℝ ∧ ((𝐶 + 1) ∈ ℝ ∧ 0 < (𝐶 + 1))) → (𝐴 ≤ (𝐵 / (𝐶 + 1)) ↔ (𝐴 · (𝐶 + 1)) ≤ ((𝐵 / (𝐶 + 1)) · (𝐶 + 1))))
201, 19mp3an1 1444 . . . . . . . . . 10 (((𝐵 / (𝐶 + 1)) ∈ ℝ ∧ ((𝐶 + 1) ∈ ℝ ∧ 0 < (𝐶 + 1))) → (𝐴 ≤ (𝐵 / (𝐶 + 1)) ↔ (𝐴 · (𝐶 + 1)) ≤ ((𝐵 / (𝐶 + 1)) · (𝐶 + 1))))
2120ex 411 . . . . . . . . 9 ((𝐵 / (𝐶 + 1)) ∈ ℝ → (((𝐶 + 1) ∈ ℝ ∧ 0 < (𝐶 + 1)) → (𝐴 ≤ (𝐵 / (𝐶 + 1)) ↔ (𝐴 · (𝐶 + 1)) ≤ ((𝐵 / (𝐶 + 1)) · (𝐶 + 1)))))
224, 21mpani 694 . . . . . . . 8 ((𝐵 / (𝐶 + 1)) ∈ ℝ → (0 < (𝐶 + 1) → (𝐴 ≤ (𝐵 / (𝐶 + 1)) ↔ (𝐴 · (𝐶 + 1)) ≤ ((𝐵 / (𝐶 + 1)) · (𝐶 + 1)))))
2318, 22mpcom 38 . . . . . . 7 (0 < (𝐶 + 1) → (𝐴 ≤ (𝐵 / (𝐶 + 1)) ↔ (𝐴 · (𝐶 + 1)) ≤ ((𝐵 / (𝐶 + 1)) · (𝐶 + 1))))
2423biimpd 228 . . . . . 6 (0 < (𝐶 + 1) → (𝐴 ≤ (𝐵 / (𝐶 + 1)) → (𝐴 · (𝐶 + 1)) ≤ ((𝐵 / (𝐶 + 1)) · (𝐶 + 1))))
2514, 24syl 17 . . . . 5 (0 ≤ 𝐶 → (𝐴 ≤ (𝐵 / (𝐶 + 1)) → (𝐴 · (𝐶 + 1)) ≤ ((𝐵 / (𝐶 + 1)) · (𝐶 + 1))))
2625imp 405 . . . 4 ((0 ≤ 𝐶𝐴 ≤ (𝐵 / (𝐶 + 1))) → (𝐴 · (𝐶 + 1)) ≤ ((𝐵 / (𝐶 + 1)) · (𝐶 + 1)))
2716recni 11256 . . . . . . 7 𝐵 ∈ ℂ
284recni 11256 . . . . . . 7 (𝐶 + 1) ∈ ℂ
2927, 28divcan1zi 11978 . . . . . 6 ((𝐶 + 1) ≠ 0 → ((𝐵 / (𝐶 + 1)) · (𝐶 + 1)) = 𝐵)
3014, 15, 293syl 18 . . . . 5 (0 ≤ 𝐶 → ((𝐵 / (𝐶 + 1)) · (𝐶 + 1)) = 𝐵)
3130adantr 479 . . . 4 ((0 ≤ 𝐶𝐴 ≤ (𝐵 / (𝐶 + 1))) → ((𝐵 / (𝐶 + 1)) · (𝐶 + 1)) = 𝐵)
3226, 31breqtrd 5167 . . 3 ((0 ≤ 𝐶𝐴 ≤ (𝐵 / (𝐶 + 1))) → (𝐴 · (𝐶 + 1)) ≤ 𝐵)
33323adant1 1127 . 2 ((0 ≤ 𝐴 ∧ 0 ≤ 𝐶𝐴 ≤ (𝐵 / (𝐶 + 1))) → (𝐴 · (𝐶 + 1)) ≤ 𝐵)
341, 2remulcli 11258 . . 3 (𝐴 · 𝐶) ∈ ℝ
351, 4remulcli 11258 . . 3 (𝐴 · (𝐶 + 1)) ∈ ℝ
3634, 35, 16letri 11371 . 2 (((𝐴 · 𝐶) ≤ (𝐴 · (𝐶 + 1)) ∧ (𝐴 · (𝐶 + 1)) ≤ 𝐵) → (𝐴 · 𝐶) ≤ 𝐵)
3711, 33, 36syl2anc 582 1 ((0 ≤ 𝐴 ∧ 0 ≤ 𝐶𝐴 ≤ (𝐵 / (𝐶 + 1))) → (𝐴 · 𝐶) ≤ 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394  w3a 1084   = wceq 1533  wcel 2098  wne 2930   class class class wbr 5141  (class class class)co 7414  cr 11135  0cc0 11136  1c1 11137   + caddc 11139   · cmul 11141   < clt 11276  cle 11277   / cdiv 11899
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-sep 5292  ax-nul 5299  ax-pow 5357  ax-pr 5421  ax-un 7736  ax-resscn 11193  ax-1cn 11194  ax-icn 11195  ax-addcl 11196  ax-addrcl 11197  ax-mulcl 11198  ax-mulrcl 11199  ax-mulcom 11200  ax-addass 11201  ax-mulass 11202  ax-distr 11203  ax-i2m1 11204  ax-1ne0 11205  ax-1rid 11206  ax-rnegex 11207  ax-rrecex 11208  ax-cnre 11209  ax-pre-lttri 11210  ax-pre-lttrn 11211  ax-pre-ltadd 11212  ax-pre-mulgt0 11213
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3364  df-reu 3365  df-rab 3420  df-v 3465  df-sbc 3769  df-csb 3885  df-dif 3942  df-un 3944  df-in 3946  df-ss 3956  df-nul 4317  df-if 4523  df-pw 4598  df-sn 4623  df-pr 4625  df-op 4629  df-uni 4902  df-br 5142  df-opab 5204  df-mpt 5225  df-id 5568  df-po 5582  df-so 5583  df-xp 5676  df-rel 5677  df-cnv 5678  df-co 5679  df-dm 5680  df-rn 5681  df-res 5682  df-ima 5683  df-iota 6493  df-fun 6543  df-fn 6544  df-f 6545  df-f1 6546  df-fo 6547  df-f1o 6548  df-fv 6549  df-riota 7370  df-ov 7417  df-oprab 7418  df-mpo 7419  df-er 8721  df-en 8961  df-dom 8962  df-sdom 8963  df-pnf 11278  df-mnf 11279  df-xr 11280  df-ltxr 11281  df-le 11282  df-sub 11474  df-neg 11475  df-div 11900
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator
OSZAR »