Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lighneallem4 Structured version   Visualization version   GIF version

Theorem lighneallem4 46979
Description: Lemma 3 for lighneal 46980. (Contributed by AV, 16-Aug-2021.)
Assertion
Ref Expression
lighneallem4 (((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ (¬ 2 ∥ 𝑁 ∧ ¬ 2 ∥ 𝑀) ∧ ((2↑𝑁) − 1) = (𝑃𝑀)) → 𝑀 = 1)

Proof of Theorem lighneallem4
Dummy variables 𝑘 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 2cnd 12328 . . . . . . . . . 10 (𝑁 ∈ ℕ → 2 ∈ ℂ)
2 nnnn0 12517 . . . . . . . . . 10 (𝑁 ∈ ℕ → 𝑁 ∈ ℕ0)
31, 2expcld 14150 . . . . . . . . 9 (𝑁 ∈ ℕ → (2↑𝑁) ∈ ℂ)
433ad2ant3 1132 . . . . . . . 8 ((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (2↑𝑁) ∈ ℂ)
5 1cnd 11247 . . . . . . . 8 ((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → 1 ∈ ℂ)
6 eldifi 4127 . . . . . . . . . . 11 (𝑃 ∈ (ℙ ∖ {2}) → 𝑃 ∈ ℙ)
7 prmnn 16652 . . . . . . . . . . 11 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ)
8 nncn 12258 . . . . . . . . . . 11 (𝑃 ∈ ℕ → 𝑃 ∈ ℂ)
96, 7, 83syl 18 . . . . . . . . . 10 (𝑃 ∈ (ℙ ∖ {2}) → 𝑃 ∈ ℂ)
1093ad2ant1 1130 . . . . . . . . 9 ((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → 𝑃 ∈ ℂ)
11 nnnn0 12517 . . . . . . . . . 10 (𝑀 ∈ ℕ → 𝑀 ∈ ℕ0)
12113ad2ant2 1131 . . . . . . . . 9 ((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → 𝑀 ∈ ℕ0)
1310, 12expcld 14150 . . . . . . . 8 ((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝑃𝑀) ∈ ℂ)
144, 5, 133jca 1125 . . . . . . 7 ((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → ((2↑𝑁) ∈ ℂ ∧ 1 ∈ ℂ ∧ (𝑃𝑀) ∈ ℂ))
1514adantr 479 . . . . . 6 (((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ ¬ 2 ∥ 𝑀) → ((2↑𝑁) ∈ ℂ ∧ 1 ∈ ℂ ∧ (𝑃𝑀) ∈ ℂ))
16 subadd2 11502 . . . . . 6 (((2↑𝑁) ∈ ℂ ∧ 1 ∈ ℂ ∧ (𝑃𝑀) ∈ ℂ) → (((2↑𝑁) − 1) = (𝑃𝑀) ↔ ((𝑃𝑀) + 1) = (2↑𝑁)))
1715, 16syl 17 . . . . 5 (((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ ¬ 2 ∥ 𝑀) → (((2↑𝑁) − 1) = (𝑃𝑀) ↔ ((𝑃𝑀) + 1) = (2↑𝑁)))
1810adantr 479 . . . . . . . 8 (((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ ¬ 2 ∥ 𝑀) → 𝑃 ∈ ℂ)
19 simpl2 1189 . . . . . . . 8 (((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ ¬ 2 ∥ 𝑀) → 𝑀 ∈ ℕ)
20 simpr 483 . . . . . . . 8 (((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ ¬ 2 ∥ 𝑀) → ¬ 2 ∥ 𝑀)
2118, 19, 20oddpwp1fsum 16376 . . . . . . 7 (((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ ¬ 2 ∥ 𝑀) → ((𝑃𝑀) + 1) = ((𝑃 + 1) · Σ𝑘 ∈ (0...(𝑀 − 1))((-1↑𝑘) · (𝑃𝑘))))
2221eqeq1d 2730 . . . . . 6 (((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ ¬ 2 ∥ 𝑀) → (((𝑃𝑀) + 1) = (2↑𝑁) ↔ ((𝑃 + 1) · Σ𝑘 ∈ (0...(𝑀 − 1))((-1↑𝑘) · (𝑃𝑘))) = (2↑𝑁)))
23 peano2nn 12262 . . . . . . . . . . . . . 14 (𝑃 ∈ ℕ → (𝑃 + 1) ∈ ℕ)
2423nnzd 12623 . . . . . . . . . . . . 13 (𝑃 ∈ ℕ → (𝑃 + 1) ∈ ℤ)
256, 7, 243syl 18 . . . . . . . . . . . 12 (𝑃 ∈ (ℙ ∖ {2}) → (𝑃 + 1) ∈ ℤ)
26253ad2ant1 1130 . . . . . . . . . . 11 ((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝑃 + 1) ∈ ℤ)
27 fzfid 13978 . . . . . . . . . . . 12 ((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (0...(𝑀 − 1)) ∈ Fin)
28 neg1z 12636 . . . . . . . . . . . . . . 15 -1 ∈ ℤ
2928a1i 11 . . . . . . . . . . . . . 14 ((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → -1 ∈ ℤ)
30 elfznn0 13634 . . . . . . . . . . . . . 14 (𝑘 ∈ (0...(𝑀 − 1)) → 𝑘 ∈ ℕ0)
31 zexpcl 14081 . . . . . . . . . . . . . 14 ((-1 ∈ ℤ ∧ 𝑘 ∈ ℕ0) → (-1↑𝑘) ∈ ℤ)
3229, 30, 31syl2an 594 . . . . . . . . . . . . 13 (((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ 𝑘 ∈ (0...(𝑀 − 1))) → (-1↑𝑘) ∈ ℤ)
33 nnz 12617 . . . . . . . . . . . . . . . 16 (𝑃 ∈ ℕ → 𝑃 ∈ ℤ)
346, 7, 333syl 18 . . . . . . . . . . . . . . 15 (𝑃 ∈ (ℙ ∖ {2}) → 𝑃 ∈ ℤ)
35343ad2ant1 1130 . . . . . . . . . . . . . 14 ((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → 𝑃 ∈ ℤ)
36 zexpcl 14081 . . . . . . . . . . . . . 14 ((𝑃 ∈ ℤ ∧ 𝑘 ∈ ℕ0) → (𝑃𝑘) ∈ ℤ)
3735, 30, 36syl2an 594 . . . . . . . . . . . . 13 (((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ 𝑘 ∈ (0...(𝑀 − 1))) → (𝑃𝑘) ∈ ℤ)
3832, 37zmulcld 12710 . . . . . . . . . . . 12 (((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ 𝑘 ∈ (0...(𝑀 − 1))) → ((-1↑𝑘) · (𝑃𝑘)) ∈ ℤ)
3927, 38fsumzcl 15721 . . . . . . . . . . 11 ((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → Σ𝑘 ∈ (0...(𝑀 − 1))((-1↑𝑘) · (𝑃𝑘)) ∈ ℤ)
4026, 39jca 510 . . . . . . . . . 10 ((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → ((𝑃 + 1) ∈ ℤ ∧ Σ𝑘 ∈ (0...(𝑀 − 1))((-1↑𝑘) · (𝑃𝑘)) ∈ ℤ))
4140ad2antrr 724 . . . . . . . . 9 ((((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ ¬ 2 ∥ 𝑀) ∧ ((𝑃 + 1) · Σ𝑘 ∈ (0...(𝑀 − 1))((-1↑𝑘) · (𝑃𝑘))) = (2↑𝑁)) → ((𝑃 + 1) ∈ ℤ ∧ Σ𝑘 ∈ (0...(𝑀 − 1))((-1↑𝑘) · (𝑃𝑘)) ∈ ℤ))
42 dvdsmul2 16263 . . . . . . . . 9 (((𝑃 + 1) ∈ ℤ ∧ Σ𝑘 ∈ (0...(𝑀 − 1))((-1↑𝑘) · (𝑃𝑘)) ∈ ℤ) → Σ𝑘 ∈ (0...(𝑀 − 1))((-1↑𝑘) · (𝑃𝑘)) ∥ ((𝑃 + 1) · Σ𝑘 ∈ (0...(𝑀 − 1))((-1↑𝑘) · (𝑃𝑘))))
4341, 42syl 17 . . . . . . . 8 ((((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ ¬ 2 ∥ 𝑀) ∧ ((𝑃 + 1) · Σ𝑘 ∈ (0...(𝑀 − 1))((-1↑𝑘) · (𝑃𝑘))) = (2↑𝑁)) → Σ𝑘 ∈ (0...(𝑀 − 1))((-1↑𝑘) · (𝑃𝑘)) ∥ ((𝑃 + 1) · Σ𝑘 ∈ (0...(𝑀 − 1))((-1↑𝑘) · (𝑃𝑘))))
44 breq2 5156 . . . . . . . . . 10 (((𝑃 + 1) · Σ𝑘 ∈ (0...(𝑀 − 1))((-1↑𝑘) · (𝑃𝑘))) = (2↑𝑁) → (Σ𝑘 ∈ (0...(𝑀 − 1))((-1↑𝑘) · (𝑃𝑘)) ∥ ((𝑃 + 1) · Σ𝑘 ∈ (0...(𝑀 − 1))((-1↑𝑘) · (𝑃𝑘))) ↔ Σ𝑘 ∈ (0...(𝑀 − 1))((-1↑𝑘) · (𝑃𝑘)) ∥ (2↑𝑁)))
4544adantl 480 . . . . . . . . 9 ((((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ ¬ 2 ∥ 𝑀) ∧ ((𝑃 + 1) · Σ𝑘 ∈ (0...(𝑀 − 1))((-1↑𝑘) · (𝑃𝑘))) = (2↑𝑁)) → (Σ𝑘 ∈ (0...(𝑀 − 1))((-1↑𝑘) · (𝑃𝑘)) ∥ ((𝑃 + 1) · Σ𝑘 ∈ (0...(𝑀 − 1))((-1↑𝑘) · (𝑃𝑘))) ↔ Σ𝑘 ∈ (0...(𝑀 − 1))((-1↑𝑘) · (𝑃𝑘)) ∥ (2↑𝑁)))
46 2a1 28 . . . . . . . . . . 11 (𝑀 = 1 → (((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ ¬ 2 ∥ 𝑀) → (Σ𝑘 ∈ (0...(𝑀 − 1))((-1↑𝑘) · (𝑃𝑘)) ∥ (2↑𝑁) → 𝑀 = 1)))
47 2prm 16670 . . . . . . . . . . . . . . . 16 2 ∈ ℙ
48 prmuz2 16674 . . . . . . . . . . . . . . . . . . . 20 (𝑃 ∈ ℙ → 𝑃 ∈ (ℤ‘2))
496, 48syl 17 . . . . . . . . . . . . . . . . . . 19 (𝑃 ∈ (ℙ ∖ {2}) → 𝑃 ∈ (ℤ‘2))
50493ad2ant1 1130 . . . . . . . . . . . . . . . . . 18 ((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → 𝑃 ∈ (ℤ‘2))
5150adantr 479 . . . . . . . . . . . . . . . . 17 (((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ (¬ 𝑀 = 1 ∧ ¬ 2 ∥ 𝑀)) → 𝑃 ∈ (ℤ‘2))
52 df-ne 2938 . . . . . . . . . . . . . . . . . . . . . 22 (𝑀 ≠ 1 ↔ ¬ 𝑀 = 1)
53 eluz2b3 12944 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑀 ∈ (ℤ‘2) ↔ (𝑀 ∈ ℕ ∧ 𝑀 ≠ 1))
5453simplbi2 499 . . . . . . . . . . . . . . . . . . . . . 22 (𝑀 ∈ ℕ → (𝑀 ≠ 1 → 𝑀 ∈ (ℤ‘2)))
5552, 54biimtrrid 242 . . . . . . . . . . . . . . . . . . . . 21 (𝑀 ∈ ℕ → (¬ 𝑀 = 1 → 𝑀 ∈ (ℤ‘2)))
56553ad2ant2 1131 . . . . . . . . . . . . . . . . . . . 20 ((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (¬ 𝑀 = 1 → 𝑀 ∈ (ℤ‘2)))
5756com12 32 . . . . . . . . . . . . . . . . . . 19 𝑀 = 1 → ((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → 𝑀 ∈ (ℤ‘2)))
5857adantr 479 . . . . . . . . . . . . . . . . . 18 ((¬ 𝑀 = 1 ∧ ¬ 2 ∥ 𝑀) → ((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → 𝑀 ∈ (ℤ‘2)))
5958impcom 406 . . . . . . . . . . . . . . . . 17 (((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ (¬ 𝑀 = 1 ∧ ¬ 2 ∥ 𝑀)) → 𝑀 ∈ (ℤ‘2))
60 simprr 771 . . . . . . . . . . . . . . . . 17 (((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ (¬ 𝑀 = 1 ∧ ¬ 2 ∥ 𝑀)) → ¬ 2 ∥ 𝑀)
61 lighneallem4b 46978 . . . . . . . . . . . . . . . . 17 ((𝑃 ∈ (ℤ‘2) ∧ 𝑀 ∈ (ℤ‘2) ∧ ¬ 2 ∥ 𝑀) → Σ𝑘 ∈ (0...(𝑀 − 1))((-1↑𝑘) · (𝑃𝑘)) ∈ (ℤ‘2))
6251, 59, 60, 61syl3anc 1368 . . . . . . . . . . . . . . . 16 (((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ (¬ 𝑀 = 1 ∧ ¬ 2 ∥ 𝑀)) → Σ𝑘 ∈ (0...(𝑀 − 1))((-1↑𝑘) · (𝑃𝑘)) ∈ (ℤ‘2))
6323ad2ant3 1132 . . . . . . . . . . . . . . . . 17 ((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → 𝑁 ∈ ℕ0)
6463adantr 479 . . . . . . . . . . . . . . . 16 (((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ (¬ 𝑀 = 1 ∧ ¬ 2 ∥ 𝑀)) → 𝑁 ∈ ℕ0)
65 dvdsprmpweqnn 16861 . . . . . . . . . . . . . . . 16 ((2 ∈ ℙ ∧ Σ𝑘 ∈ (0...(𝑀 − 1))((-1↑𝑘) · (𝑃𝑘)) ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ0) → (Σ𝑘 ∈ (0...(𝑀 − 1))((-1↑𝑘) · (𝑃𝑘)) ∥ (2↑𝑁) → ∃𝑛 ∈ ℕ Σ𝑘 ∈ (0...(𝑀 − 1))((-1↑𝑘) · (𝑃𝑘)) = (2↑𝑛)))
6647, 62, 64, 65mp3an2i 1462 . . . . . . . . . . . . . . 15 (((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ (¬ 𝑀 = 1 ∧ ¬ 2 ∥ 𝑀)) → (Σ𝑘 ∈ (0...(𝑀 − 1))((-1↑𝑘) · (𝑃𝑘)) ∥ (2↑𝑁) → ∃𝑛 ∈ ℕ Σ𝑘 ∈ (0...(𝑀 − 1))((-1↑𝑘) · (𝑃𝑘)) = (2↑𝑛)))
67 2z 12632 . . . . . . . . . . . . . . . . . . 19 2 ∈ ℤ
6867a1i 11 . . . . . . . . . . . . . . . . . 18 (((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ (¬ 𝑀 = 1 ∧ ¬ 2 ∥ 𝑀)) → 2 ∈ ℤ)
69 iddvdsexp 16264 . . . . . . . . . . . . . . . . . 18 ((2 ∈ ℤ ∧ 𝑛 ∈ ℕ) → 2 ∥ (2↑𝑛))
7068, 69sylan 578 . . . . . . . . . . . . . . . . 17 ((((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ (¬ 𝑀 = 1 ∧ ¬ 2 ∥ 𝑀)) ∧ 𝑛 ∈ ℕ) → 2 ∥ (2↑𝑛))
71 breq2 5156 . . . . . . . . . . . . . . . . . . . 20 𝑘 ∈ (0...(𝑀 − 1))((-1↑𝑘) · (𝑃𝑘)) = (2↑𝑛) → (2 ∥ Σ𝑘 ∈ (0...(𝑀 − 1))((-1↑𝑘) · (𝑃𝑘)) ↔ 2 ∥ (2↑𝑛)))
7271adantl 480 . . . . . . . . . . . . . . . . . . 19 (((((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ (¬ 𝑀 = 1 ∧ ¬ 2 ∥ 𝑀)) ∧ 𝑛 ∈ ℕ) ∧ Σ𝑘 ∈ (0...(𝑀 − 1))((-1↑𝑘) · (𝑃𝑘)) = (2↑𝑛)) → (2 ∥ Σ𝑘 ∈ (0...(𝑀 − 1))((-1↑𝑘) · (𝑃𝑘)) ↔ 2 ∥ (2↑𝑛)))
73 fzfid 13978 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ (¬ 𝑀 = 1 ∧ ¬ 2 ∥ 𝑀)) ∧ 𝑛 ∈ ℕ) → (0...(𝑀 − 1)) ∈ Fin)
7428a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑃 ∈ ℕ → -1 ∈ ℤ)
7574, 31sylan 578 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑃 ∈ ℕ ∧ 𝑘 ∈ ℕ0) → (-1↑𝑘) ∈ ℤ)
76 nnnn0 12517 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑃 ∈ ℕ → 𝑃 ∈ ℕ0)
7776adantr 479 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝑃 ∈ ℕ ∧ 𝑘 ∈ ℕ0) → 𝑃 ∈ ℕ0)
78 simpr 483 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝑃 ∈ ℕ ∧ 𝑘 ∈ ℕ0) → 𝑘 ∈ ℕ0)
7977, 78nn0expcld 14248 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝑃 ∈ ℕ ∧ 𝑘 ∈ ℕ0) → (𝑃𝑘) ∈ ℕ0)
8079nn0zd 12622 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑃 ∈ ℕ ∧ 𝑘 ∈ ℕ0) → (𝑃𝑘) ∈ ℤ)
8175, 80zmulcld 12710 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑃 ∈ ℕ ∧ 𝑘 ∈ ℕ0) → ((-1↑𝑘) · (𝑃𝑘)) ∈ ℤ)
8281ex 411 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑃 ∈ ℕ → (𝑘 ∈ ℕ0 → ((-1↑𝑘) · (𝑃𝑘)) ∈ ℤ))
836, 7, 823syl 18 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑃 ∈ (ℙ ∖ {2}) → (𝑘 ∈ ℕ0 → ((-1↑𝑘) · (𝑃𝑘)) ∈ ℤ))
84833ad2ant1 1130 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝑘 ∈ ℕ0 → ((-1↑𝑘) · (𝑃𝑘)) ∈ ℤ))
8584ad2antrr 724 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ (¬ 𝑀 = 1 ∧ ¬ 2 ∥ 𝑀)) ∧ 𝑛 ∈ ℕ) → (𝑘 ∈ ℕ0 → ((-1↑𝑘) · (𝑃𝑘)) ∈ ℤ))
8685, 30impel 504 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ (¬ 𝑀 = 1 ∧ ¬ 2 ∥ 𝑀)) ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (0...(𝑀 − 1))) → ((-1↑𝑘) · (𝑃𝑘)) ∈ ℤ)
87 nn0z 12621 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑘 ∈ ℕ0𝑘 ∈ ℤ)
88 m1expcl2 14090 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑘 ∈ ℤ → (-1↑𝑘) ∈ {-1, 1})
8987, 88syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑘 ∈ ℕ0 → (-1↑𝑘) ∈ {-1, 1})
90 ovex 7459 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (-1↑𝑘) ∈ V
9190elpr 4656 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((-1↑𝑘) ∈ {-1, 1} ↔ ((-1↑𝑘) = -1 ∨ (-1↑𝑘) = 1))
92 n2dvdsm1 16353 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ¬ 2 ∥ -1
93 breq2 5156 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((-1↑𝑘) = -1 → (2 ∥ (-1↑𝑘) ↔ 2 ∥ -1))
9492, 93mtbiri 326 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((-1↑𝑘) = -1 → ¬ 2 ∥ (-1↑𝑘))
95 n2dvds1 16352 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ¬ 2 ∥ 1
96 breq2 5156 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((-1↑𝑘) = 1 → (2 ∥ (-1↑𝑘) ↔ 2 ∥ 1))
9795, 96mtbiri 326 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((-1↑𝑘) = 1 → ¬ 2 ∥ (-1↑𝑘))
9894, 97jaoi 855 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((-1↑𝑘) = -1 ∨ (-1↑𝑘) = 1) → ¬ 2 ∥ (-1↑𝑘))
9998a1d 25 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((-1↑𝑘) = -1 ∨ (-1↑𝑘) = 1) → (𝑘 ∈ ℕ0 → ¬ 2 ∥ (-1↑𝑘)))
10091, 99sylbi 216 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((-1↑𝑘) ∈ {-1, 1} → (𝑘 ∈ ℕ0 → ¬ 2 ∥ (-1↑𝑘)))
10189, 100mpcom 38 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑘 ∈ ℕ0 → ¬ 2 ∥ (-1↑𝑘))
102101adantl 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑘 ∈ ℕ0) → ¬ 2 ∥ (-1↑𝑘))
103 elnn0 12512 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑘 ∈ ℕ0 ↔ (𝑘 ∈ ℕ ∨ 𝑘 = 0))
104 oddn2prm 16788 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝑃 ∈ (ℙ ∖ {2}) → ¬ 2 ∥ 𝑃)
105104adantr 479 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑘 ∈ ℕ) → ¬ 2 ∥ 𝑃)
106 simpr 483 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑘 ∈ ℕ) → 𝑘 ∈ ℕ)
107 prmdvdsexp 16693 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((2 ∈ ℙ ∧ 𝑃 ∈ ℤ ∧ 𝑘 ∈ ℕ) → (2 ∥ (𝑃𝑘) ↔ 2 ∥ 𝑃))
10847, 34, 106, 107mp3an2ani 1464 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑘 ∈ ℕ) → (2 ∥ (𝑃𝑘) ↔ 2 ∥ 𝑃))
109105, 108mtbird 324 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑘 ∈ ℕ) → ¬ 2 ∥ (𝑃𝑘))
110109expcom 412 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑘 ∈ ℕ → (𝑃 ∈ (ℙ ∖ {2}) → ¬ 2 ∥ (𝑃𝑘)))
111 oveq2 7434 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (𝑘 = 0 → (𝑃𝑘) = (𝑃↑0))
112111adantr 479 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((𝑘 = 0 ∧ 𝑃 ∈ (ℙ ∖ {2})) → (𝑃𝑘) = (𝑃↑0))
1139adantl 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((𝑘 = 0 ∧ 𝑃 ∈ (ℙ ∖ {2})) → 𝑃 ∈ ℂ)
114113exp0d 14144 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((𝑘 = 0 ∧ 𝑃 ∈ (ℙ ∖ {2})) → (𝑃↑0) = 1)
115112, 114eqtrd 2768 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝑘 = 0 ∧ 𝑃 ∈ (ℙ ∖ {2})) → (𝑃𝑘) = 1)
116115breq2d 5164 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝑘 = 0 ∧ 𝑃 ∈ (ℙ ∖ {2})) → (2 ∥ (𝑃𝑘) ↔ 2 ∥ 1))
11795, 116mtbiri 326 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝑘 = 0 ∧ 𝑃 ∈ (ℙ ∖ {2})) → ¬ 2 ∥ (𝑃𝑘))
118117ex 411 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑘 = 0 → (𝑃 ∈ (ℙ ∖ {2}) → ¬ 2 ∥ (𝑃𝑘)))
119110, 118jaoi 855 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝑘 ∈ ℕ ∨ 𝑘 = 0) → (𝑃 ∈ (ℙ ∖ {2}) → ¬ 2 ∥ (𝑃𝑘)))
120103, 119sylbi 216 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑘 ∈ ℕ0 → (𝑃 ∈ (ℙ ∖ {2}) → ¬ 2 ∥ (𝑃𝑘)))
121120impcom 406 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑘 ∈ ℕ0) → ¬ 2 ∥ (𝑃𝑘))
122 ioran 981 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (¬ (2 ∥ (-1↑𝑘) ∨ 2 ∥ (𝑃𝑘)) ↔ (¬ 2 ∥ (-1↑𝑘) ∧ ¬ 2 ∥ (𝑃𝑘)))
123102, 121, 122sylanbrc 581 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑘 ∈ ℕ0) → ¬ (2 ∥ (-1↑𝑘) ∨ 2 ∥ (𝑃𝑘)))
12428, 31mpan 688 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑘 ∈ ℕ0 → (-1↑𝑘) ∈ ℤ)
125124adantl 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑘 ∈ ℕ0) → (-1↑𝑘) ∈ ℤ)
1266, 7, 763syl 18 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑃 ∈ (ℙ ∖ {2}) → 𝑃 ∈ ℕ0)
127126adantr 479 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑘 ∈ ℕ0) → 𝑃 ∈ ℕ0)
128 simpr 483 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑘 ∈ ℕ0) → 𝑘 ∈ ℕ0)
129127, 128nn0expcld 14248 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑘 ∈ ℕ0) → (𝑃𝑘) ∈ ℕ0)
130129nn0zd 12622 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑘 ∈ ℕ0) → (𝑃𝑘) ∈ ℤ)
131 euclemma 16691 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((2 ∈ ℙ ∧ (-1↑𝑘) ∈ ℤ ∧ (𝑃𝑘) ∈ ℤ) → (2 ∥ ((-1↑𝑘) · (𝑃𝑘)) ↔ (2 ∥ (-1↑𝑘) ∨ 2 ∥ (𝑃𝑘))))
13247, 125, 130, 131mp3an2i 1462 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑘 ∈ ℕ0) → (2 ∥ ((-1↑𝑘) · (𝑃𝑘)) ↔ (2 ∥ (-1↑𝑘) ∨ 2 ∥ (𝑃𝑘))))
133123, 132mtbird 324 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑘 ∈ ℕ0) → ¬ 2 ∥ ((-1↑𝑘) · (𝑃𝑘)))
134133ex 411 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑃 ∈ (ℙ ∖ {2}) → (𝑘 ∈ ℕ0 → ¬ 2 ∥ ((-1↑𝑘) · (𝑃𝑘))))
1351343ad2ant1 1130 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝑘 ∈ ℕ0 → ¬ 2 ∥ ((-1↑𝑘) · (𝑃𝑘))))
136135ad2antrr 724 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ (¬ 𝑀 = 1 ∧ ¬ 2 ∥ 𝑀)) ∧ 𝑛 ∈ ℕ) → (𝑘 ∈ ℕ0 → ¬ 2 ∥ ((-1↑𝑘) · (𝑃𝑘))))
137136, 30impel 504 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ (¬ 𝑀 = 1 ∧ ¬ 2 ∥ 𝑀)) ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (0...(𝑀 − 1))) → ¬ 2 ∥ ((-1↑𝑘) · (𝑃𝑘)))
138 nnm1nn0 12551 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑀 ∈ ℕ → (𝑀 − 1) ∈ ℕ0)
139 hashfz0 14431 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝑀 − 1) ∈ ℕ0 → (♯‘(0...(𝑀 − 1))) = ((𝑀 − 1) + 1))
140138, 139syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑀 ∈ ℕ → (♯‘(0...(𝑀 − 1))) = ((𝑀 − 1) + 1))
141 nncn 12258 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑀 ∈ ℕ → 𝑀 ∈ ℂ)
142 npcan1 11677 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑀 ∈ ℂ → ((𝑀 − 1) + 1) = 𝑀)
143141, 142syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑀 ∈ ℕ → ((𝑀 − 1) + 1) = 𝑀)
144140, 143eqtr2d 2769 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑀 ∈ ℕ → 𝑀 = (♯‘(0...(𝑀 − 1))))
1451443ad2ant2 1131 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → 𝑀 = (♯‘(0...(𝑀 − 1))))
146145adantr 479 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ ¬ 𝑀 = 1) → 𝑀 = (♯‘(0...(𝑀 − 1))))
147146breq2d 5164 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ ¬ 𝑀 = 1) → (2 ∥ 𝑀 ↔ 2 ∥ (♯‘(0...(𝑀 − 1)))))
148147notbid 317 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ ¬ 𝑀 = 1) → (¬ 2 ∥ 𝑀 ↔ ¬ 2 ∥ (♯‘(0...(𝑀 − 1)))))
149148biimpd 228 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ ¬ 𝑀 = 1) → (¬ 2 ∥ 𝑀 → ¬ 2 ∥ (♯‘(0...(𝑀 − 1)))))
150149impr 453 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ (¬ 𝑀 = 1 ∧ ¬ 2 ∥ 𝑀)) → ¬ 2 ∥ (♯‘(0...(𝑀 − 1))))
151150adantr 479 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ (¬ 𝑀 = 1 ∧ ¬ 2 ∥ 𝑀)) ∧ 𝑛 ∈ ℕ) → ¬ 2 ∥ (♯‘(0...(𝑀 − 1))))
15273, 86, 137, 151oddsumodd 16374 . . . . . . . . . . . . . . . . . . . . 21 ((((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ (¬ 𝑀 = 1 ∧ ¬ 2 ∥ 𝑀)) ∧ 𝑛 ∈ ℕ) → ¬ 2 ∥ Σ𝑘 ∈ (0...(𝑀 − 1))((-1↑𝑘) · (𝑃𝑘)))
153152pm2.21d 121 . . . . . . . . . . . . . . . . . . . 20 ((((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ (¬ 𝑀 = 1 ∧ ¬ 2 ∥ 𝑀)) ∧ 𝑛 ∈ ℕ) → (2 ∥ Σ𝑘 ∈ (0...(𝑀 − 1))((-1↑𝑘) · (𝑃𝑘)) → 𝑀 = 1))
154153adantr 479 . . . . . . . . . . . . . . . . . . 19 (((((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ (¬ 𝑀 = 1 ∧ ¬ 2 ∥ 𝑀)) ∧ 𝑛 ∈ ℕ) ∧ Σ𝑘 ∈ (0...(𝑀 − 1))((-1↑𝑘) · (𝑃𝑘)) = (2↑𝑛)) → (2 ∥ Σ𝑘 ∈ (0...(𝑀 − 1))((-1↑𝑘) · (𝑃𝑘)) → 𝑀 = 1))
15572, 154sylbird 259 . . . . . . . . . . . . . . . . . 18 (((((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ (¬ 𝑀 = 1 ∧ ¬ 2 ∥ 𝑀)) ∧ 𝑛 ∈ ℕ) ∧ Σ𝑘 ∈ (0...(𝑀 − 1))((-1↑𝑘) · (𝑃𝑘)) = (2↑𝑛)) → (2 ∥ (2↑𝑛) → 𝑀 = 1))
156155ex 411 . . . . . . . . . . . . . . . . 17 ((((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ (¬ 𝑀 = 1 ∧ ¬ 2 ∥ 𝑀)) ∧ 𝑛 ∈ ℕ) → (Σ𝑘 ∈ (0...(𝑀 − 1))((-1↑𝑘) · (𝑃𝑘)) = (2↑𝑛) → (2 ∥ (2↑𝑛) → 𝑀 = 1)))
15770, 156mpid 44 . . . . . . . . . . . . . . . 16 ((((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ (¬ 𝑀 = 1 ∧ ¬ 2 ∥ 𝑀)) ∧ 𝑛 ∈ ℕ) → (Σ𝑘 ∈ (0...(𝑀 − 1))((-1↑𝑘) · (𝑃𝑘)) = (2↑𝑛) → 𝑀 = 1))
158157rexlimdva 3152 . . . . . . . . . . . . . . 15 (((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ (¬ 𝑀 = 1 ∧ ¬ 2 ∥ 𝑀)) → (∃𝑛 ∈ ℕ Σ𝑘 ∈ (0...(𝑀 − 1))((-1↑𝑘) · (𝑃𝑘)) = (2↑𝑛) → 𝑀 = 1))
15966, 158syld 47 . . . . . . . . . . . . . 14 (((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ (¬ 𝑀 = 1 ∧ ¬ 2 ∥ 𝑀)) → (Σ𝑘 ∈ (0...(𝑀 − 1))((-1↑𝑘) · (𝑃𝑘)) ∥ (2↑𝑁) → 𝑀 = 1))
160159exp32 419 . . . . . . . . . . . . 13 ((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (¬ 𝑀 = 1 → (¬ 2 ∥ 𝑀 → (Σ𝑘 ∈ (0...(𝑀 − 1))((-1↑𝑘) · (𝑃𝑘)) ∥ (2↑𝑁) → 𝑀 = 1))))
161160com12 32 . . . . . . . . . . . 12 𝑀 = 1 → ((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (¬ 2 ∥ 𝑀 → (Σ𝑘 ∈ (0...(𝑀 − 1))((-1↑𝑘) · (𝑃𝑘)) ∥ (2↑𝑁) → 𝑀 = 1))))
162161impd 409 . . . . . . . . . . 11 𝑀 = 1 → (((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ ¬ 2 ∥ 𝑀) → (Σ𝑘 ∈ (0...(𝑀 − 1))((-1↑𝑘) · (𝑃𝑘)) ∥ (2↑𝑁) → 𝑀 = 1)))
16346, 162pm2.61i 182 . . . . . . . . . 10 (((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ ¬ 2 ∥ 𝑀) → (Σ𝑘 ∈ (0...(𝑀 − 1))((-1↑𝑘) · (𝑃𝑘)) ∥ (2↑𝑁) → 𝑀 = 1))
164163adantr 479 . . . . . . . . 9 ((((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ ¬ 2 ∥ 𝑀) ∧ ((𝑃 + 1) · Σ𝑘 ∈ (0...(𝑀 − 1))((-1↑𝑘) · (𝑃𝑘))) = (2↑𝑁)) → (Σ𝑘 ∈ (0...(𝑀 − 1))((-1↑𝑘) · (𝑃𝑘)) ∥ (2↑𝑁) → 𝑀 = 1))
16545, 164sylbid 239 . . . . . . . 8 ((((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ ¬ 2 ∥ 𝑀) ∧ ((𝑃 + 1) · Σ𝑘 ∈ (0...(𝑀 − 1))((-1↑𝑘) · (𝑃𝑘))) = (2↑𝑁)) → (Σ𝑘 ∈ (0...(𝑀 − 1))((-1↑𝑘) · (𝑃𝑘)) ∥ ((𝑃 + 1) · Σ𝑘 ∈ (0...(𝑀 − 1))((-1↑𝑘) · (𝑃𝑘))) → 𝑀 = 1))
16643, 165mpd 15 . . . . . . 7 ((((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ ¬ 2 ∥ 𝑀) ∧ ((𝑃 + 1) · Σ𝑘 ∈ (0...(𝑀 − 1))((-1↑𝑘) · (𝑃𝑘))) = (2↑𝑁)) → 𝑀 = 1)
167166ex 411 . . . . . 6 (((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ ¬ 2 ∥ 𝑀) → (((𝑃 + 1) · Σ𝑘 ∈ (0...(𝑀 − 1))((-1↑𝑘) · (𝑃𝑘))) = (2↑𝑁) → 𝑀 = 1))
16822, 167sylbid 239 . . . . 5 (((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ ¬ 2 ∥ 𝑀) → (((𝑃𝑀) + 1) = (2↑𝑁) → 𝑀 = 1))
16917, 168sylbid 239 . . . 4 (((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ ¬ 2 ∥ 𝑀) → (((2↑𝑁) − 1) = (𝑃𝑀) → 𝑀 = 1))
170169ex 411 . . 3 ((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (¬ 2 ∥ 𝑀 → (((2↑𝑁) − 1) = (𝑃𝑀) → 𝑀 = 1)))
171170adantld 489 . 2 ((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → ((¬ 2 ∥ 𝑁 ∧ ¬ 2 ∥ 𝑀) → (((2↑𝑁) − 1) = (𝑃𝑀) → 𝑀 = 1)))
1721713imp 1108 1 (((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ (¬ 2 ∥ 𝑁 ∧ ¬ 2 ∥ 𝑀) ∧ ((2↑𝑁) − 1) = (𝑃𝑀)) → 𝑀 = 1)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 394  wo 845  w3a 1084   = wceq 1533  wcel 2098  wne 2937  wrex 3067  cdif 3946  {csn 4632  {cpr 4634   class class class wbr 5152  cfv 6553  (class class class)co 7426  cc 11144  0cc0 11146  1c1 11147   + caddc 11149   · cmul 11151  cmin 11482  -cneg 11483  cn 12250  2c2 12305  0cn0 12510  cz 12596  cuz 12860  ...cfz 13524  cexp 14066  chash 14329  Σcsu 15672  cdvds 16238  cprime 16649
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2699  ax-rep 5289  ax-sep 5303  ax-nul 5310  ax-pow 5369  ax-pr 5433  ax-un 7746  ax-inf2 9672  ax-cnex 11202  ax-resscn 11203  ax-1cn 11204  ax-icn 11205  ax-addcl 11206  ax-addrcl 11207  ax-mulcl 11208  ax-mulrcl 11209  ax-mulcom 11210  ax-addass 11211  ax-mulass 11212  ax-distr 11213  ax-i2m1 11214  ax-1ne0 11215  ax-1rid 11216  ax-rnegex 11217  ax-rrecex 11218  ax-cnre 11219  ax-pre-lttri 11220  ax-pre-lttrn 11221  ax-pre-ltadd 11222  ax-pre-mulgt0 11223  ax-pre-sup 11224
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2529  df-eu 2558  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3374  df-reu 3375  df-rab 3431  df-v 3475  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4327  df-if 4533  df-pw 4608  df-sn 4633  df-pr 4635  df-op 4639  df-uni 4913  df-int 4954  df-iun 5002  df-br 5153  df-opab 5215  df-mpt 5236  df-tr 5270  df-id 5580  df-eprel 5586  df-po 5594  df-so 5595  df-fr 5637  df-se 5638  df-we 5639  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-pred 6310  df-ord 6377  df-on 6378  df-lim 6379  df-suc 6380  df-iota 6505  df-fun 6555  df-fn 6556  df-f 6557  df-f1 6558  df-fo 6559  df-f1o 6560  df-fv 6561  df-isom 6562  df-riota 7382  df-ov 7429  df-oprab 7430  df-mpo 7431  df-om 7877  df-1st 7999  df-2nd 8000  df-frecs 8293  df-wrecs 8324  df-recs 8398  df-rdg 8437  df-1o 8493  df-2o 8494  df-oadd 8497  df-er 8731  df-en 8971  df-dom 8972  df-sdom 8973  df-fin 8974  df-sup 9473  df-inf 9474  df-oi 9541  df-dju 9932  df-card 9970  df-pnf 11288  df-mnf 11289  df-xr 11290  df-ltxr 11291  df-le 11292  df-sub 11484  df-neg 11485  df-div 11910  df-nn 12251  df-2 12313  df-3 12314  df-4 12315  df-n0 12511  df-z 12597  df-uz 12861  df-q 12971  df-rp 13015  df-fz 13525  df-fzo 13668  df-fl 13797  df-mod 13875  df-seq 14007  df-exp 14067  df-hash 14330  df-cj 15086  df-re 15087  df-im 15088  df-sqrt 15222  df-abs 15223  df-clim 15472  df-sum 15673  df-dvds 16239  df-gcd 16477  df-prm 16650  df-pc 16813
This theorem is referenced by:  lighneal  46980
  Copyright terms: Public domain W3C validator
OSZAR »