![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > limsupequz | Structured version Visualization version GIF version |
Description: Two functions that are eventually equal to one another have the same superior limit. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
Ref | Expression |
---|---|
limsupequz.1 | ⊢ Ⅎ𝑘𝜑 |
limsupequz.2 | ⊢ Ⅎ𝑘𝐹 |
limsupequz.3 | ⊢ Ⅎ𝑘𝐺 |
limsupequz.4 | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
limsupequz.5 | ⊢ (𝜑 → 𝐹 Fn (ℤ≥‘𝑀)) |
limsupequz.6 | ⊢ (𝜑 → 𝑁 ∈ ℤ) |
limsupequz.7 | ⊢ (𝜑 → 𝐺 Fn (ℤ≥‘𝑁)) |
limsupequz.8 | ⊢ (𝜑 → 𝐾 ∈ ℤ) |
limsupequz.9 | ⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝐾)) → (𝐹‘𝑘) = (𝐺‘𝑘)) |
Ref | Expression |
---|---|
limsupequz | ⊢ (𝜑 → (lim sup‘𝐹) = (lim sup‘𝐺)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfv 1909 | . 2 ⊢ Ⅎ𝑗𝜑 | |
2 | limsupequz.4 | . 2 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
3 | limsupequz.5 | . 2 ⊢ (𝜑 → 𝐹 Fn (ℤ≥‘𝑀)) | |
4 | limsupequz.6 | . 2 ⊢ (𝜑 → 𝑁 ∈ ℤ) | |
5 | limsupequz.7 | . 2 ⊢ (𝜑 → 𝐺 Fn (ℤ≥‘𝑁)) | |
6 | limsupequz.8 | . 2 ⊢ (𝜑 → 𝐾 ∈ ℤ) | |
7 | limsupequz.1 | . . . . 5 ⊢ Ⅎ𝑘𝜑 | |
8 | nfv 1909 | . . . . 5 ⊢ Ⅎ𝑘 𝑗 ∈ (ℤ≥‘𝐾) | |
9 | 7, 8 | nfan 1894 | . . . 4 ⊢ Ⅎ𝑘(𝜑 ∧ 𝑗 ∈ (ℤ≥‘𝐾)) |
10 | limsupequz.2 | . . . . . 6 ⊢ Ⅎ𝑘𝐹 | |
11 | nfcv 2898 | . . . . . 6 ⊢ Ⅎ𝑘𝑗 | |
12 | 10, 11 | nffv 6910 | . . . . 5 ⊢ Ⅎ𝑘(𝐹‘𝑗) |
13 | limsupequz.3 | . . . . . 6 ⊢ Ⅎ𝑘𝐺 | |
14 | 13, 11 | nffv 6910 | . . . . 5 ⊢ Ⅎ𝑘(𝐺‘𝑗) |
15 | 12, 14 | nfeq 2912 | . . . 4 ⊢ Ⅎ𝑘(𝐹‘𝑗) = (𝐺‘𝑗) |
16 | 9, 15 | nfim 1891 | . . 3 ⊢ Ⅎ𝑘((𝜑 ∧ 𝑗 ∈ (ℤ≥‘𝐾)) → (𝐹‘𝑗) = (𝐺‘𝑗)) |
17 | eleq1w 2811 | . . . . 5 ⊢ (𝑘 = 𝑗 → (𝑘 ∈ (ℤ≥‘𝐾) ↔ 𝑗 ∈ (ℤ≥‘𝐾))) | |
18 | 17 | anbi2d 628 | . . . 4 ⊢ (𝑘 = 𝑗 → ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝐾)) ↔ (𝜑 ∧ 𝑗 ∈ (ℤ≥‘𝐾)))) |
19 | fveq2 6900 | . . . . 5 ⊢ (𝑘 = 𝑗 → (𝐹‘𝑘) = (𝐹‘𝑗)) | |
20 | fveq2 6900 | . . . . 5 ⊢ (𝑘 = 𝑗 → (𝐺‘𝑘) = (𝐺‘𝑗)) | |
21 | 19, 20 | eqeq12d 2743 | . . . 4 ⊢ (𝑘 = 𝑗 → ((𝐹‘𝑘) = (𝐺‘𝑘) ↔ (𝐹‘𝑗) = (𝐺‘𝑗))) |
22 | 18, 21 | imbi12d 343 | . . 3 ⊢ (𝑘 = 𝑗 → (((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝐾)) → (𝐹‘𝑘) = (𝐺‘𝑘)) ↔ ((𝜑 ∧ 𝑗 ∈ (ℤ≥‘𝐾)) → (𝐹‘𝑗) = (𝐺‘𝑗)))) |
23 | limsupequz.9 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝐾)) → (𝐹‘𝑘) = (𝐺‘𝑘)) | |
24 | 16, 22, 23 | chvarfv 2228 | . 2 ⊢ ((𝜑 ∧ 𝑗 ∈ (ℤ≥‘𝐾)) → (𝐹‘𝑗) = (𝐺‘𝑗)) |
25 | 1, 2, 3, 4, 5, 6, 24 | limsupequzlem 45112 | 1 ⊢ (𝜑 → (lim sup‘𝐹) = (lim sup‘𝐺)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 = wceq 1533 Ⅎwnf 1777 ∈ wcel 2098 Ⅎwnfc 2878 Fn wfn 6546 ‘cfv 6551 ℤcz 12594 ℤ≥cuz 12858 lim supclsp 15452 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2698 ax-rep 5287 ax-sep 5301 ax-nul 5308 ax-pow 5367 ax-pr 5431 ax-un 7744 ax-cnex 11200 ax-resscn 11201 ax-1cn 11202 ax-icn 11203 ax-addcl 11204 ax-addrcl 11205 ax-mulcl 11206 ax-mulrcl 11207 ax-mulcom 11208 ax-addass 11209 ax-mulass 11210 ax-distr 11211 ax-i2m1 11212 ax-1ne0 11213 ax-1rid 11214 ax-rnegex 11215 ax-rrecex 11216 ax-cnre 11217 ax-pre-lttri 11218 ax-pre-lttrn 11219 ax-pre-ltadd 11220 ax-pre-mulgt0 11221 ax-pre-sup 11222 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ne 2937 df-nel 3043 df-ral 3058 df-rex 3067 df-rmo 3372 df-reu 3373 df-rab 3429 df-v 3473 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4325 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-tp 4635 df-op 4637 df-uni 4911 df-iun 5000 df-br 5151 df-opab 5213 df-mpt 5234 df-tr 5268 df-id 5578 df-eprel 5584 df-po 5592 df-so 5593 df-fr 5635 df-we 5637 df-xp 5686 df-rel 5687 df-cnv 5688 df-co 5689 df-dm 5690 df-rn 5691 df-res 5692 df-ima 5693 df-pred 6308 df-ord 6375 df-on 6376 df-lim 6377 df-suc 6378 df-iota 6503 df-fun 6553 df-fn 6554 df-f 6555 df-f1 6556 df-fo 6557 df-f1o 6558 df-fv 6559 df-riota 7380 df-ov 7427 df-oprab 7428 df-mpo 7429 df-om 7875 df-1st 7997 df-2nd 7998 df-frecs 8291 df-wrecs 8322 df-recs 8396 df-rdg 8435 df-1o 8491 df-er 8729 df-en 8969 df-dom 8970 df-sdom 8971 df-fin 8972 df-sup 9471 df-inf 9472 df-pnf 11286 df-mnf 11287 df-xr 11288 df-ltxr 11289 df-le 11290 df-sub 11482 df-neg 11483 df-div 11908 df-nn 12249 df-n0 12509 df-z 12595 df-uz 12859 df-q 12969 df-ico 13368 df-limsup 15453 |
This theorem is referenced by: limsupequzmptlem 45118 smflimsuplem2 46211 |
Copyright terms: Public domain | W3C validator |