Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  limsuppnflem Structured version   Visualization version   GIF version

Theorem limsuppnflem 45098
Description: If the restriction of a function to every upper interval is unbounded above, its lim sup is +∞. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Hypotheses
Ref Expression
limsuppnflem.j 𝑗𝐹
limsuppnflem.a (𝜑𝐴 ⊆ ℝ)
limsuppnflem.f (𝜑𝐹:𝐴⟶ℝ*)
Assertion
Ref Expression
limsuppnflem (𝜑 → ((lim sup‘𝐹) = +∞ ↔ ∀𝑥 ∈ ℝ ∀𝑘 ∈ ℝ ∃𝑗𝐴 (𝑘𝑗𝑥 ≤ (𝐹𝑗))))
Distinct variable groups:   𝐴,𝑗,𝑘,𝑥   𝑘,𝐹,𝑥   𝜑,𝑗,𝑘,𝑥
Allowed substitution hint:   𝐹(𝑗)

Proof of Theorem limsuppnflem
StepHypRef Expression
1 id 22 . . . . . . 7 (𝜑𝜑)
2 imnan 399 . . . . . . . . . . . . . 14 ((𝑘𝑗 → ¬ 𝑥 ≤ (𝐹𝑗)) ↔ ¬ (𝑘𝑗𝑥 ≤ (𝐹𝑗)))
32ralbii 3090 . . . . . . . . . . . . 13 (∀𝑗𝐴 (𝑘𝑗 → ¬ 𝑥 ≤ (𝐹𝑗)) ↔ ∀𝑗𝐴 ¬ (𝑘𝑗𝑥 ≤ (𝐹𝑗)))
4 ralnex 3069 . . . . . . . . . . . . 13 (∀𝑗𝐴 ¬ (𝑘𝑗𝑥 ≤ (𝐹𝑗)) ↔ ¬ ∃𝑗𝐴 (𝑘𝑗𝑥 ≤ (𝐹𝑗)))
53, 4bitri 275 . . . . . . . . . . . 12 (∀𝑗𝐴 (𝑘𝑗 → ¬ 𝑥 ≤ (𝐹𝑗)) ↔ ¬ ∃𝑗𝐴 (𝑘𝑗𝑥 ≤ (𝐹𝑗)))
65rexbii 3091 . . . . . . . . . . 11 (∃𝑘 ∈ ℝ ∀𝑗𝐴 (𝑘𝑗 → ¬ 𝑥 ≤ (𝐹𝑗)) ↔ ∃𝑘 ∈ ℝ ¬ ∃𝑗𝐴 (𝑘𝑗𝑥 ≤ (𝐹𝑗)))
7 rexnal 3097 . . . . . . . . . . 11 (∃𝑘 ∈ ℝ ¬ ∃𝑗𝐴 (𝑘𝑗𝑥 ≤ (𝐹𝑗)) ↔ ¬ ∀𝑘 ∈ ℝ ∃𝑗𝐴 (𝑘𝑗𝑥 ≤ (𝐹𝑗)))
86, 7bitri 275 . . . . . . . . . 10 (∃𝑘 ∈ ℝ ∀𝑗𝐴 (𝑘𝑗 → ¬ 𝑥 ≤ (𝐹𝑗)) ↔ ¬ ∀𝑘 ∈ ℝ ∃𝑗𝐴 (𝑘𝑗𝑥 ≤ (𝐹𝑗)))
98rexbii 3091 . . . . . . . . 9 (∃𝑥 ∈ ℝ ∃𝑘 ∈ ℝ ∀𝑗𝐴 (𝑘𝑗 → ¬ 𝑥 ≤ (𝐹𝑗)) ↔ ∃𝑥 ∈ ℝ ¬ ∀𝑘 ∈ ℝ ∃𝑗𝐴 (𝑘𝑗𝑥 ≤ (𝐹𝑗)))
10 rexnal 3097 . . . . . . . . 9 (∃𝑥 ∈ ℝ ¬ ∀𝑘 ∈ ℝ ∃𝑗𝐴 (𝑘𝑗𝑥 ≤ (𝐹𝑗)) ↔ ¬ ∀𝑥 ∈ ℝ ∀𝑘 ∈ ℝ ∃𝑗𝐴 (𝑘𝑗𝑥 ≤ (𝐹𝑗)))
119, 10bitri 275 . . . . . . . 8 (∃𝑥 ∈ ℝ ∃𝑘 ∈ ℝ ∀𝑗𝐴 (𝑘𝑗 → ¬ 𝑥 ≤ (𝐹𝑗)) ↔ ¬ ∀𝑥 ∈ ℝ ∀𝑘 ∈ ℝ ∃𝑗𝐴 (𝑘𝑗𝑥 ≤ (𝐹𝑗)))
1211biimpri 227 . . . . . . 7 (¬ ∀𝑥 ∈ ℝ ∀𝑘 ∈ ℝ ∃𝑗𝐴 (𝑘𝑗𝑥 ≤ (𝐹𝑗)) → ∃𝑥 ∈ ℝ ∃𝑘 ∈ ℝ ∀𝑗𝐴 (𝑘𝑗 → ¬ 𝑥 ≤ (𝐹𝑗)))
13 simp1 1134 . . . . . . . . . . . . 13 (((((𝜑𝑥 ∈ ℝ) ∧ 𝑘 ∈ ℝ) ∧ 𝑗𝐴) ∧ (𝑘𝑗 → ¬ 𝑥 ≤ (𝐹𝑗)) ∧ 𝑘𝑗) → (((𝜑𝑥 ∈ ℝ) ∧ 𝑘 ∈ ℝ) ∧ 𝑗𝐴))
14 id 22 . . . . . . . . . . . . . . 15 ((𝑘𝑗 → ¬ 𝑥 ≤ (𝐹𝑗)) → (𝑘𝑗 → ¬ 𝑥 ≤ (𝐹𝑗)))
1514imp 406 . . . . . . . . . . . . . 14 (((𝑘𝑗 → ¬ 𝑥 ≤ (𝐹𝑗)) ∧ 𝑘𝑗) → ¬ 𝑥 ≤ (𝐹𝑗))
16153adant1 1128 . . . . . . . . . . . . 13 (((((𝜑𝑥 ∈ ℝ) ∧ 𝑘 ∈ ℝ) ∧ 𝑗𝐴) ∧ (𝑘𝑗 → ¬ 𝑥 ≤ (𝐹𝑗)) ∧ 𝑘𝑗) → ¬ 𝑥 ≤ (𝐹𝑗))
17 limsuppnflem.f . . . . . . . . . . . . . . . . 17 (𝜑𝐹:𝐴⟶ℝ*)
1817ffvelcdmda 7094 . . . . . . . . . . . . . . . 16 ((𝜑𝑗𝐴) → (𝐹𝑗) ∈ ℝ*)
1918ad4ant14 751 . . . . . . . . . . . . . . 15 ((((𝜑𝑥 ∈ ℝ) ∧ 𝑘 ∈ ℝ) ∧ 𝑗𝐴) → (𝐹𝑗) ∈ ℝ*)
2019adantr 480 . . . . . . . . . . . . . 14 (((((𝜑𝑥 ∈ ℝ) ∧ 𝑘 ∈ ℝ) ∧ 𝑗𝐴) ∧ ¬ 𝑥 ≤ (𝐹𝑗)) → (𝐹𝑗) ∈ ℝ*)
21 simpllr 775 . . . . . . . . . . . . . . . 16 ((((𝜑𝑥 ∈ ℝ) ∧ 𝑘 ∈ ℝ) ∧ 𝑗𝐴) → 𝑥 ∈ ℝ)
22 rexr 11290 . . . . . . . . . . . . . . . 16 (𝑥 ∈ ℝ → 𝑥 ∈ ℝ*)
2321, 22syl 17 . . . . . . . . . . . . . . 15 ((((𝜑𝑥 ∈ ℝ) ∧ 𝑘 ∈ ℝ) ∧ 𝑗𝐴) → 𝑥 ∈ ℝ*)
2423adantr 480 . . . . . . . . . . . . . 14 (((((𝜑𝑥 ∈ ℝ) ∧ 𝑘 ∈ ℝ) ∧ 𝑗𝐴) ∧ ¬ 𝑥 ≤ (𝐹𝑗)) → 𝑥 ∈ ℝ*)
25 simpr 484 . . . . . . . . . . . . . . . 16 ((((𝜑𝑥 ∈ ℝ) ∧ 𝑗𝐴) ∧ ¬ 𝑥 ≤ (𝐹𝑗)) → ¬ 𝑥 ≤ (𝐹𝑗))
2618ad4ant13 750 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑥 ∈ ℝ) ∧ 𝑗𝐴) ∧ ¬ 𝑥 ≤ (𝐹𝑗)) → (𝐹𝑗) ∈ ℝ*)
2722ad3antlr 730 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑥 ∈ ℝ) ∧ 𝑗𝐴) ∧ ¬ 𝑥 ≤ (𝐹𝑗)) → 𝑥 ∈ ℝ*)
2826, 27xrltnled 44745 . . . . . . . . . . . . . . . 16 ((((𝜑𝑥 ∈ ℝ) ∧ 𝑗𝐴) ∧ ¬ 𝑥 ≤ (𝐹𝑗)) → ((𝐹𝑗) < 𝑥 ↔ ¬ 𝑥 ≤ (𝐹𝑗)))
2925, 28mpbird 257 . . . . . . . . . . . . . . 15 ((((𝜑𝑥 ∈ ℝ) ∧ 𝑗𝐴) ∧ ¬ 𝑥 ≤ (𝐹𝑗)) → (𝐹𝑗) < 𝑥)
3029adantllr 718 . . . . . . . . . . . . . 14 (((((𝜑𝑥 ∈ ℝ) ∧ 𝑘 ∈ ℝ) ∧ 𝑗𝐴) ∧ ¬ 𝑥 ≤ (𝐹𝑗)) → (𝐹𝑗) < 𝑥)
3120, 24, 30xrltled 13161 . . . . . . . . . . . . 13 (((((𝜑𝑥 ∈ ℝ) ∧ 𝑘 ∈ ℝ) ∧ 𝑗𝐴) ∧ ¬ 𝑥 ≤ (𝐹𝑗)) → (𝐹𝑗) ≤ 𝑥)
3213, 16, 31syl2anc 583 . . . . . . . . . . . 12 (((((𝜑𝑥 ∈ ℝ) ∧ 𝑘 ∈ ℝ) ∧ 𝑗𝐴) ∧ (𝑘𝑗 → ¬ 𝑥 ≤ (𝐹𝑗)) ∧ 𝑘𝑗) → (𝐹𝑗) ≤ 𝑥)
33323exp 1117 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ ℝ) ∧ 𝑘 ∈ ℝ) ∧ 𝑗𝐴) → ((𝑘𝑗 → ¬ 𝑥 ≤ (𝐹𝑗)) → (𝑘𝑗 → (𝐹𝑗) ≤ 𝑥)))
3433ralimdva 3164 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ) ∧ 𝑘 ∈ ℝ) → (∀𝑗𝐴 (𝑘𝑗 → ¬ 𝑥 ≤ (𝐹𝑗)) → ∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) ≤ 𝑥)))
3534reximdva 3165 . . . . . . . . 9 ((𝜑𝑥 ∈ ℝ) → (∃𝑘 ∈ ℝ ∀𝑗𝐴 (𝑘𝑗 → ¬ 𝑥 ≤ (𝐹𝑗)) → ∃𝑘 ∈ ℝ ∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) ≤ 𝑥)))
3635reximdva 3165 . . . . . . . 8 (𝜑 → (∃𝑥 ∈ ℝ ∃𝑘 ∈ ℝ ∀𝑗𝐴 (𝑘𝑗 → ¬ 𝑥 ≤ (𝐹𝑗)) → ∃𝑥 ∈ ℝ ∃𝑘 ∈ ℝ ∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) ≤ 𝑥)))
3736imp 406 . . . . . . 7 ((𝜑 ∧ ∃𝑥 ∈ ℝ ∃𝑘 ∈ ℝ ∀𝑗𝐴 (𝑘𝑗 → ¬ 𝑥 ≤ (𝐹𝑗))) → ∃𝑥 ∈ ℝ ∃𝑘 ∈ ℝ ∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) ≤ 𝑥))
381, 12, 37syl2an 595 . . . . . 6 ((𝜑 ∧ ¬ ∀𝑥 ∈ ℝ ∀𝑘 ∈ ℝ ∃𝑗𝐴 (𝑘𝑗𝑥 ≤ (𝐹𝑗))) → ∃𝑥 ∈ ℝ ∃𝑘 ∈ ℝ ∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) ≤ 𝑥))
39 reex 11229 . . . . . . . . . . . . . 14 ℝ ∈ V
4039a1i 11 . . . . . . . . . . . . 13 (𝜑 → ℝ ∈ V)
41 limsuppnflem.a . . . . . . . . . . . . 13 (𝜑𝐴 ⊆ ℝ)
4240, 41ssexd 5324 . . . . . . . . . . . 12 (𝜑𝐴 ∈ V)
4317, 42fexd 7239 . . . . . . . . . . 11 (𝜑𝐹 ∈ V)
4443limsupcld 45078 . . . . . . . . . 10 (𝜑 → (lim sup‘𝐹) ∈ ℝ*)
4544ad2antrr 725 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ) ∧ ∃𝑘 ∈ ℝ ∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) ≤ 𝑥)) → (lim sup‘𝐹) ∈ ℝ*)
4622ad2antlr 726 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ) ∧ ∃𝑘 ∈ ℝ ∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) ≤ 𝑥)) → 𝑥 ∈ ℝ*)
47 pnfxr 11298 . . . . . . . . . 10 +∞ ∈ ℝ*
4847a1i 11 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ) ∧ ∃𝑘 ∈ ℝ ∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) ≤ 𝑥)) → +∞ ∈ ℝ*)
49 limsuppnflem.j . . . . . . . . . 10 𝑗𝐹
5041ad2antrr 725 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ) ∧ ∃𝑘 ∈ ℝ ∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) ≤ 𝑥)) → 𝐴 ⊆ ℝ)
5117ad2antrr 725 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ) ∧ ∃𝑘 ∈ ℝ ∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) ≤ 𝑥)) → 𝐹:𝐴⟶ℝ*)
52 simpr 484 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ) ∧ ∃𝑘 ∈ ℝ ∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) ≤ 𝑥)) → ∃𝑘 ∈ ℝ ∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) ≤ 𝑥))
5349, 50, 51, 46, 52limsupbnd1f 45074 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ) ∧ ∃𝑘 ∈ ℝ ∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) ≤ 𝑥)) → (lim sup‘𝐹) ≤ 𝑥)
54 ltpnf 13132 . . . . . . . . . 10 (𝑥 ∈ ℝ → 𝑥 < +∞)
5554ad2antlr 726 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ) ∧ ∃𝑘 ∈ ℝ ∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) ≤ 𝑥)) → 𝑥 < +∞)
5645, 46, 48, 53, 55xrlelttrd 13171 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ) ∧ ∃𝑘 ∈ ℝ ∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) ≤ 𝑥)) → (lim sup‘𝐹) < +∞)
5756rexlimdva2 3154 . . . . . . 7 (𝜑 → (∃𝑥 ∈ ℝ ∃𝑘 ∈ ℝ ∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) ≤ 𝑥) → (lim sup‘𝐹) < +∞))
5857imp 406 . . . . . 6 ((𝜑 ∧ ∃𝑥 ∈ ℝ ∃𝑘 ∈ ℝ ∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) ≤ 𝑥)) → (lim sup‘𝐹) < +∞)
5938, 58syldan 590 . . . . 5 ((𝜑 ∧ ¬ ∀𝑥 ∈ ℝ ∀𝑘 ∈ ℝ ∃𝑗𝐴 (𝑘𝑗𝑥 ≤ (𝐹𝑗))) → (lim sup‘𝐹) < +∞)
6059adantlr 714 . . . 4 (((𝜑 ∧ (lim sup‘𝐹) = +∞) ∧ ¬ ∀𝑥 ∈ ℝ ∀𝑘 ∈ ℝ ∃𝑗𝐴 (𝑘𝑗𝑥 ≤ (𝐹𝑗))) → (lim sup‘𝐹) < +∞)
61 id 22 . . . . . . . 8 ((lim sup‘𝐹) = +∞ → (lim sup‘𝐹) = +∞)
6247a1i 11 . . . . . . . 8 ((lim sup‘𝐹) = +∞ → +∞ ∈ ℝ*)
6361, 62eqeltrd 2829 . . . . . . 7 ((lim sup‘𝐹) = +∞ → (lim sup‘𝐹) ∈ ℝ*)
6463, 61xreqnltd 44777 . . . . . 6 ((lim sup‘𝐹) = +∞ → ¬ (lim sup‘𝐹) < +∞)
6564adantl 481 . . . . 5 ((𝜑 ∧ (lim sup‘𝐹) = +∞) → ¬ (lim sup‘𝐹) < +∞)
6665adantr 480 . . . 4 (((𝜑 ∧ (lim sup‘𝐹) = +∞) ∧ ¬ ∀𝑥 ∈ ℝ ∀𝑘 ∈ ℝ ∃𝑗𝐴 (𝑘𝑗𝑥 ≤ (𝐹𝑗))) → ¬ (lim sup‘𝐹) < +∞)
6760, 66condan 817 . . 3 ((𝜑 ∧ (lim sup‘𝐹) = +∞) → ∀𝑥 ∈ ℝ ∀𝑘 ∈ ℝ ∃𝑗𝐴 (𝑘𝑗𝑥 ≤ (𝐹𝑗)))
6867ex 412 . 2 (𝜑 → ((lim sup‘𝐹) = +∞ → ∀𝑥 ∈ ℝ ∀𝑘 ∈ ℝ ∃𝑗𝐴 (𝑘𝑗𝑥 ≤ (𝐹𝑗))))
6941adantr 480 . . . 4 ((𝜑 ∧ ∀𝑥 ∈ ℝ ∀𝑘 ∈ ℝ ∃𝑗𝐴 (𝑘𝑗𝑥 ≤ (𝐹𝑗))) → 𝐴 ⊆ ℝ)
7017adantr 480 . . . 4 ((𝜑 ∧ ∀𝑥 ∈ ℝ ∀𝑘 ∈ ℝ ∃𝑗𝐴 (𝑘𝑗𝑥 ≤ (𝐹𝑗))) → 𝐹:𝐴⟶ℝ*)
71 simpr 484 . . . 4 ((𝜑 ∧ ∀𝑥 ∈ ℝ ∀𝑘 ∈ ℝ ∃𝑗𝐴 (𝑘𝑗𝑥 ≤ (𝐹𝑗))) → ∀𝑥 ∈ ℝ ∀𝑘 ∈ ℝ ∃𝑗𝐴 (𝑘𝑗𝑥 ≤ (𝐹𝑗)))
7249, 69, 70, 71limsuppnfd 45090 . . 3 ((𝜑 ∧ ∀𝑥 ∈ ℝ ∀𝑘 ∈ ℝ ∃𝑗𝐴 (𝑘𝑗𝑥 ≤ (𝐹𝑗))) → (lim sup‘𝐹) = +∞)
7372ex 412 . 2 (𝜑 → (∀𝑥 ∈ ℝ ∀𝑘 ∈ ℝ ∃𝑗𝐴 (𝑘𝑗𝑥 ≤ (𝐹𝑗)) → (lim sup‘𝐹) = +∞))
7468, 73impbid 211 1 (𝜑 → ((lim sup‘𝐹) = +∞ ↔ ∀𝑥 ∈ ℝ ∀𝑘 ∈ ℝ ∃𝑗𝐴 (𝑘𝑗𝑥 ≤ (𝐹𝑗))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395  w3a 1085   = wceq 1534  wcel 2099  wnfc 2879  wral 3058  wrex 3067  Vcvv 3471  wss 3947   class class class wbr 5148  wf 6544  cfv 6548  cr 11137  +∞cpnf 11275  *cxr 11277   < clt 11278  cle 11279  lim supclsp 15446
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5365  ax-pr 5429  ax-un 7740  ax-cnex 11194  ax-resscn 11195  ax-1cn 11196  ax-icn 11197  ax-addcl 11198  ax-addrcl 11199  ax-mulcl 11200  ax-mulrcl 11201  ax-mulcom 11202  ax-addass 11203  ax-mulass 11204  ax-distr 11205  ax-i2m1 11206  ax-1ne0 11207  ax-1rid 11208  ax-rnegex 11209  ax-rrecex 11210  ax-cnre 11211  ax-pre-lttri 11212  ax-pre-lttrn 11213  ax-pre-ltadd 11214  ax-pre-mulgt0 11215  ax-pre-sup 11216
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3373  df-reu 3374  df-rab 3430  df-v 3473  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4909  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5576  df-po 5590  df-so 5591  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-iota 6500  df-fun 6550  df-fn 6551  df-f 6552  df-f1 6553  df-fo 6554  df-f1o 6555  df-fv 6556  df-riota 7376  df-ov 7423  df-oprab 7424  df-mpo 7425  df-er 8724  df-en 8964  df-dom 8965  df-sdom 8966  df-sup 9465  df-inf 9466  df-pnf 11280  df-mnf 11281  df-xr 11282  df-ltxr 11283  df-le 11284  df-sub 11476  df-neg 11477  df-ico 13362  df-limsup 15447
This theorem is referenced by:  limsuppnf  45099
  Copyright terms: Public domain W3C validator
OSZAR »