![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > limsupvaluz3 | Structured version Visualization version GIF version |
Description: Alternate definition of lim inf for an extended real-valued function, defined on a set of upper integers. (Contributed by Glauco Siliprandi, 2-Jan-2022.) |
Ref | Expression |
---|---|
limsupvaluz3.k | ⊢ Ⅎ𝑘𝜑 |
limsupvaluz3.m | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
limsupvaluz3.z | ⊢ 𝑍 = (ℤ≥‘𝑀) |
limsupvaluz3.b | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐵 ∈ ℝ*) |
Ref | Expression |
---|---|
limsupvaluz3 | ⊢ (𝜑 → (lim sup‘(𝑘 ∈ 𝑍 ↦ 𝐵)) = -𝑒(lim inf‘(𝑘 ∈ 𝑍 ↦ -𝑒𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | limsupvaluz3.k | . 2 ⊢ Ⅎ𝑘𝜑 | |
2 | limsupvaluz3.z | . . . 4 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
3 | 2 | fvexi 6914 | . . 3 ⊢ 𝑍 ∈ V |
4 | 3 | a1i 11 | . 2 ⊢ (𝜑 → 𝑍 ∈ V) |
5 | limsupvaluz3.m | . . 3 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
6 | 5 | zred 12702 | . 2 ⊢ (𝜑 → 𝑀 ∈ ℝ) |
7 | simpr 483 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ (𝑍 ∩ (𝑀[,)+∞))) → 𝑘 ∈ (𝑍 ∩ (𝑀[,)+∞))) | |
8 | 5, 2 | uzinico3 44950 | . . . . . 6 ⊢ (𝜑 → 𝑍 = (𝑍 ∩ (𝑀[,)+∞))) |
9 | 8 | eqcomd 2733 | . . . . 5 ⊢ (𝜑 → (𝑍 ∩ (𝑀[,)+∞)) = 𝑍) |
10 | 9 | adantr 479 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ (𝑍 ∩ (𝑀[,)+∞))) → (𝑍 ∩ (𝑀[,)+∞)) = 𝑍) |
11 | 7, 10 | eleqtrd 2830 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ (𝑍 ∩ (𝑀[,)+∞))) → 𝑘 ∈ 𝑍) |
12 | limsupvaluz3.b | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐵 ∈ ℝ*) | |
13 | 11, 12 | syldan 589 | . 2 ⊢ ((𝜑 ∧ 𝑘 ∈ (𝑍 ∩ (𝑀[,)+∞))) → 𝐵 ∈ ℝ*) |
14 | 1, 4, 6, 13 | limsupval4 45184 | 1 ⊢ (𝜑 → (lim sup‘(𝑘 ∈ 𝑍 ↦ 𝐵)) = -𝑒(lim inf‘(𝑘 ∈ 𝑍 ↦ -𝑒𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 = wceq 1533 Ⅎwnf 1777 ∈ wcel 2098 Vcvv 3471 ∩ cin 3946 ↦ cmpt 5233 ‘cfv 6551 (class class class)co 7424 +∞cpnf 11281 ℝ*cxr 11283 ℤcz 12594 ℤ≥cuz 12858 -𝑒cxne 13127 [,)cico 13364 lim supclsp 15452 lim infclsi 45141 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2698 ax-rep 5287 ax-sep 5301 ax-nul 5308 ax-pow 5367 ax-pr 5431 ax-un 7744 ax-cnex 11200 ax-resscn 11201 ax-1cn 11202 ax-icn 11203 ax-addcl 11204 ax-addrcl 11205 ax-mulcl 11206 ax-mulrcl 11207 ax-mulcom 11208 ax-addass 11209 ax-mulass 11210 ax-distr 11211 ax-i2m1 11212 ax-1ne0 11213 ax-1rid 11214 ax-rnegex 11215 ax-rrecex 11216 ax-cnre 11217 ax-pre-lttri 11218 ax-pre-lttrn 11219 ax-pre-ltadd 11220 ax-pre-mulgt0 11221 ax-pre-sup 11222 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ne 2937 df-nel 3043 df-ral 3058 df-rex 3067 df-rmo 3372 df-reu 3373 df-rab 3429 df-v 3473 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4325 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4911 df-iun 5000 df-br 5151 df-opab 5213 df-mpt 5234 df-tr 5268 df-id 5578 df-eprel 5584 df-po 5592 df-so 5593 df-fr 5635 df-we 5637 df-xp 5686 df-rel 5687 df-cnv 5688 df-co 5689 df-dm 5690 df-rn 5691 df-res 5692 df-ima 5693 df-pred 6308 df-ord 6375 df-on 6376 df-lim 6377 df-suc 6378 df-iota 6503 df-fun 6553 df-fn 6554 df-f 6555 df-f1 6556 df-fo 6557 df-f1o 6558 df-fv 6559 df-isom 6560 df-riota 7380 df-ov 7427 df-oprab 7428 df-mpo 7429 df-om 7875 df-1st 7997 df-2nd 7998 df-frecs 8291 df-wrecs 8322 df-recs 8396 df-rdg 8435 df-er 8729 df-en 8969 df-dom 8970 df-sdom 8971 df-sup 9471 df-inf 9472 df-pnf 11286 df-mnf 11287 df-xr 11288 df-ltxr 11289 df-le 11290 df-sub 11482 df-neg 11483 df-div 11908 df-nn 12249 df-n0 12509 df-z 12595 df-uz 12859 df-q 12969 df-xneg 13130 df-ico 13368 df-limsup 15453 df-liminf 45142 |
This theorem is referenced by: limsupvaluz4 45190 |
Copyright terms: Public domain | W3C validator |