![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > lincvalsng | Structured version Visualization version GIF version |
Description: The linear combination over a singleton. (Contributed by AV, 25-May-2019.) |
Ref | Expression |
---|---|
lincvalsn.b | ⊢ 𝐵 = (Base‘𝑀) |
lincvalsn.s | ⊢ 𝑆 = (Scalar‘𝑀) |
lincvalsn.r | ⊢ 𝑅 = (Base‘𝑆) |
lincvalsn.t | ⊢ · = ( ·𝑠 ‘𝑀) |
Ref | Expression |
---|---|
lincvalsng | ⊢ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝐵 ∧ 𝑌 ∈ 𝑅) → ({〈𝑉, 𝑌〉} ( linC ‘𝑀){𝑉}) = (𝑌 · 𝑉)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp1 1134 | . . 3 ⊢ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝐵 ∧ 𝑌 ∈ 𝑅) → 𝑀 ∈ LMod) | |
2 | simp2 1135 | . . . 4 ⊢ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝐵 ∧ 𝑌 ∈ 𝑅) → 𝑉 ∈ 𝐵) | |
3 | lincvalsn.r | . . . . . . . 8 ⊢ 𝑅 = (Base‘𝑆) | |
4 | lincvalsn.s | . . . . . . . . 9 ⊢ 𝑆 = (Scalar‘𝑀) | |
5 | 4 | fveq2i 6894 | . . . . . . . 8 ⊢ (Base‘𝑆) = (Base‘(Scalar‘𝑀)) |
6 | 3, 5 | eqtri 2756 | . . . . . . 7 ⊢ 𝑅 = (Base‘(Scalar‘𝑀)) |
7 | 6 | eleq2i 2821 | . . . . . 6 ⊢ (𝑌 ∈ 𝑅 ↔ 𝑌 ∈ (Base‘(Scalar‘𝑀))) |
8 | 7 | biimpi 215 | . . . . 5 ⊢ (𝑌 ∈ 𝑅 → 𝑌 ∈ (Base‘(Scalar‘𝑀))) |
9 | 8 | 3ad2ant3 1133 | . . . 4 ⊢ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝐵 ∧ 𝑌 ∈ 𝑅) → 𝑌 ∈ (Base‘(Scalar‘𝑀))) |
10 | fvexd 6906 | . . . 4 ⊢ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝐵 ∧ 𝑌 ∈ 𝑅) → (Base‘(Scalar‘𝑀)) ∈ V) | |
11 | eqid 2728 | . . . . 5 ⊢ {〈𝑉, 𝑌〉} = {〈𝑉, 𝑌〉} | |
12 | 11 | mapsnop 47402 | . . . 4 ⊢ ((𝑉 ∈ 𝐵 ∧ 𝑌 ∈ (Base‘(Scalar‘𝑀)) ∧ (Base‘(Scalar‘𝑀)) ∈ V) → {〈𝑉, 𝑌〉} ∈ ((Base‘(Scalar‘𝑀)) ↑m {𝑉})) |
13 | 2, 9, 10, 12 | syl3anc 1369 | . . 3 ⊢ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝐵 ∧ 𝑌 ∈ 𝑅) → {〈𝑉, 𝑌〉} ∈ ((Base‘(Scalar‘𝑀)) ↑m {𝑉})) |
14 | snelpwi 5439 | . . . . 5 ⊢ (𝑉 ∈ (Base‘𝑀) → {𝑉} ∈ 𝒫 (Base‘𝑀)) | |
15 | lincvalsn.b | . . . . 5 ⊢ 𝐵 = (Base‘𝑀) | |
16 | 14, 15 | eleq2s 2847 | . . . 4 ⊢ (𝑉 ∈ 𝐵 → {𝑉} ∈ 𝒫 (Base‘𝑀)) |
17 | 16 | 3ad2ant2 1132 | . . 3 ⊢ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝐵 ∧ 𝑌 ∈ 𝑅) → {𝑉} ∈ 𝒫 (Base‘𝑀)) |
18 | lincval 47471 | . . 3 ⊢ ((𝑀 ∈ LMod ∧ {〈𝑉, 𝑌〉} ∈ ((Base‘(Scalar‘𝑀)) ↑m {𝑉}) ∧ {𝑉} ∈ 𝒫 (Base‘𝑀)) → ({〈𝑉, 𝑌〉} ( linC ‘𝑀){𝑉}) = (𝑀 Σg (𝑣 ∈ {𝑉} ↦ (({〈𝑉, 𝑌〉}‘𝑣)( ·𝑠 ‘𝑀)𝑣)))) | |
19 | 1, 13, 17, 18 | syl3anc 1369 | . 2 ⊢ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝐵 ∧ 𝑌 ∈ 𝑅) → ({〈𝑉, 𝑌〉} ( linC ‘𝑀){𝑉}) = (𝑀 Σg (𝑣 ∈ {𝑉} ↦ (({〈𝑉, 𝑌〉}‘𝑣)( ·𝑠 ‘𝑀)𝑣)))) |
20 | lmodgrp 20743 | . . . . 5 ⊢ (𝑀 ∈ LMod → 𝑀 ∈ Grp) | |
21 | 20 | grpmndd 18896 | . . . 4 ⊢ (𝑀 ∈ LMod → 𝑀 ∈ Mnd) |
22 | 21 | 3ad2ant1 1131 | . . 3 ⊢ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝐵 ∧ 𝑌 ∈ 𝑅) → 𝑀 ∈ Mnd) |
23 | fvsng 7183 | . . . . . 6 ⊢ ((𝑉 ∈ 𝐵 ∧ 𝑌 ∈ 𝑅) → ({〈𝑉, 𝑌〉}‘𝑉) = 𝑌) | |
24 | 23 | 3adant1 1128 | . . . . 5 ⊢ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝐵 ∧ 𝑌 ∈ 𝑅) → ({〈𝑉, 𝑌〉}‘𝑉) = 𝑌) |
25 | 24 | oveq1d 7429 | . . . 4 ⊢ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝐵 ∧ 𝑌 ∈ 𝑅) → (({〈𝑉, 𝑌〉}‘𝑉)( ·𝑠 ‘𝑀)𝑉) = (𝑌( ·𝑠 ‘𝑀)𝑉)) |
26 | eqid 2728 | . . . . . 6 ⊢ ( ·𝑠 ‘𝑀) = ( ·𝑠 ‘𝑀) | |
27 | 15, 4, 26, 3 | lmodvscl 20754 | . . . . 5 ⊢ ((𝑀 ∈ LMod ∧ 𝑌 ∈ 𝑅 ∧ 𝑉 ∈ 𝐵) → (𝑌( ·𝑠 ‘𝑀)𝑉) ∈ 𝐵) |
28 | 27 | 3com23 1124 | . . . 4 ⊢ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝐵 ∧ 𝑌 ∈ 𝑅) → (𝑌( ·𝑠 ‘𝑀)𝑉) ∈ 𝐵) |
29 | 25, 28 | eqeltrd 2829 | . . 3 ⊢ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝐵 ∧ 𝑌 ∈ 𝑅) → (({〈𝑉, 𝑌〉}‘𝑉)( ·𝑠 ‘𝑀)𝑉) ∈ 𝐵) |
30 | fveq2 6891 | . . . . 5 ⊢ (𝑣 = 𝑉 → ({〈𝑉, 𝑌〉}‘𝑣) = ({〈𝑉, 𝑌〉}‘𝑉)) | |
31 | id 22 | . . . . 5 ⊢ (𝑣 = 𝑉 → 𝑣 = 𝑉) | |
32 | 30, 31 | oveq12d 7432 | . . . 4 ⊢ (𝑣 = 𝑉 → (({〈𝑉, 𝑌〉}‘𝑣)( ·𝑠 ‘𝑀)𝑣) = (({〈𝑉, 𝑌〉}‘𝑉)( ·𝑠 ‘𝑀)𝑉)) |
33 | 15, 32 | gsumsn 19902 | . . 3 ⊢ ((𝑀 ∈ Mnd ∧ 𝑉 ∈ 𝐵 ∧ (({〈𝑉, 𝑌〉}‘𝑉)( ·𝑠 ‘𝑀)𝑉) ∈ 𝐵) → (𝑀 Σg (𝑣 ∈ {𝑉} ↦ (({〈𝑉, 𝑌〉}‘𝑣)( ·𝑠 ‘𝑀)𝑣))) = (({〈𝑉, 𝑌〉}‘𝑉)( ·𝑠 ‘𝑀)𝑉)) |
34 | 22, 2, 29, 33 | syl3anc 1369 | . 2 ⊢ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝐵 ∧ 𝑌 ∈ 𝑅) → (𝑀 Σg (𝑣 ∈ {𝑉} ↦ (({〈𝑉, 𝑌〉}‘𝑣)( ·𝑠 ‘𝑀)𝑣))) = (({〈𝑉, 𝑌〉}‘𝑉)( ·𝑠 ‘𝑀)𝑉)) |
35 | lincvalsn.t | . . . . 5 ⊢ · = ( ·𝑠 ‘𝑀) | |
36 | 35 | eqcomi 2737 | . . . 4 ⊢ ( ·𝑠 ‘𝑀) = · |
37 | 36 | a1i 11 | . . 3 ⊢ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝐵 ∧ 𝑌 ∈ 𝑅) → ( ·𝑠 ‘𝑀) = · ) |
38 | eqidd 2729 | . . 3 ⊢ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝐵 ∧ 𝑌 ∈ 𝑅) → 𝑉 = 𝑉) | |
39 | 37, 24, 38 | oveq123d 7435 | . 2 ⊢ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝐵 ∧ 𝑌 ∈ 𝑅) → (({〈𝑉, 𝑌〉}‘𝑉)( ·𝑠 ‘𝑀)𝑉) = (𝑌 · 𝑉)) |
40 | 19, 34, 39 | 3eqtrd 2772 | 1 ⊢ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝐵 ∧ 𝑌 ∈ 𝑅) → ({〈𝑉, 𝑌〉} ( linC ‘𝑀){𝑉}) = (𝑌 · 𝑉)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1085 = wceq 1534 ∈ wcel 2099 Vcvv 3470 𝒫 cpw 4598 {csn 4624 〈cop 4630 ↦ cmpt 5225 ‘cfv 6542 (class class class)co 7414 ↑m cmap 8838 Basecbs 17173 Scalarcsca 17229 ·𝑠 cvsca 17230 Σg cgsu 17415 Mndcmnd 18687 LModclmod 20736 linC clinc 47466 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-rep 5279 ax-sep 5293 ax-nul 5300 ax-pow 5359 ax-pr 5423 ax-un 7734 ax-cnex 11188 ax-resscn 11189 ax-1cn 11190 ax-icn 11191 ax-addcl 11192 ax-addrcl 11193 ax-mulcl 11194 ax-mulrcl 11195 ax-mulcom 11196 ax-addass 11197 ax-mulass 11198 ax-distr 11199 ax-i2m1 11200 ax-1ne0 11201 ax-1rid 11202 ax-rnegex 11203 ax-rrecex 11204 ax-cnre 11205 ax-pre-lttri 11206 ax-pre-lttrn 11207 ax-pre-ltadd 11208 ax-pre-mulgt0 11209 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2937 df-nel 3043 df-ral 3058 df-rex 3067 df-rmo 3372 df-reu 3373 df-rab 3429 df-v 3472 df-sbc 3776 df-csb 3891 df-dif 3948 df-un 3950 df-in 3952 df-ss 3962 df-pss 3964 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-int 4945 df-iun 4993 df-br 5143 df-opab 5205 df-mpt 5226 df-tr 5260 df-id 5570 df-eprel 5576 df-po 5584 df-so 5585 df-fr 5627 df-se 5628 df-we 5629 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-pred 6299 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-isom 6551 df-riota 7370 df-ov 7417 df-oprab 7418 df-mpo 7419 df-om 7865 df-1st 7987 df-2nd 7988 df-supp 8160 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-1o 8480 df-er 8718 df-map 8840 df-en 8958 df-dom 8959 df-sdom 8960 df-fin 8961 df-oi 9527 df-card 9956 df-pnf 11274 df-mnf 11275 df-xr 11276 df-ltxr 11277 df-le 11278 df-sub 11470 df-neg 11471 df-nn 12237 df-n0 12497 df-z 12583 df-uz 12847 df-fz 13511 df-fzo 13654 df-seq 13993 df-hash 14316 df-0g 17416 df-gsum 17417 df-mgm 18593 df-sgrp 18672 df-mnd 18688 df-grp 18886 df-mulg 19017 df-cntz 19261 df-lmod 20738 df-linc 47468 |
This theorem is referenced by: lincvalsn 47479 snlindsntorlem 47532 ldepsnlinclem1 47567 ldepsnlinclem2 47568 |
Copyright terms: Public domain | W3C validator |