Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lincvalsng Structured version   Visualization version   GIF version

Theorem lincvalsng 47478
Description: The linear combination over a singleton. (Contributed by AV, 25-May-2019.)
Hypotheses
Ref Expression
lincvalsn.b 𝐵 = (Base‘𝑀)
lincvalsn.s 𝑆 = (Scalar‘𝑀)
lincvalsn.r 𝑅 = (Base‘𝑆)
lincvalsn.t · = ( ·𝑠𝑀)
Assertion
Ref Expression
lincvalsng ((𝑀 ∈ LMod ∧ 𝑉𝐵𝑌𝑅) → ({⟨𝑉, 𝑌⟩} ( linC ‘𝑀){𝑉}) = (𝑌 · 𝑉))

Proof of Theorem lincvalsng
Dummy variable 𝑣 is distinct from all other variables.
StepHypRef Expression
1 simp1 1134 . . 3 ((𝑀 ∈ LMod ∧ 𝑉𝐵𝑌𝑅) → 𝑀 ∈ LMod)
2 simp2 1135 . . . 4 ((𝑀 ∈ LMod ∧ 𝑉𝐵𝑌𝑅) → 𝑉𝐵)
3 lincvalsn.r . . . . . . . 8 𝑅 = (Base‘𝑆)
4 lincvalsn.s . . . . . . . . 9 𝑆 = (Scalar‘𝑀)
54fveq2i 6894 . . . . . . . 8 (Base‘𝑆) = (Base‘(Scalar‘𝑀))
63, 5eqtri 2756 . . . . . . 7 𝑅 = (Base‘(Scalar‘𝑀))
76eleq2i 2821 . . . . . 6 (𝑌𝑅𝑌 ∈ (Base‘(Scalar‘𝑀)))
87biimpi 215 . . . . 5 (𝑌𝑅𝑌 ∈ (Base‘(Scalar‘𝑀)))
983ad2ant3 1133 . . . 4 ((𝑀 ∈ LMod ∧ 𝑉𝐵𝑌𝑅) → 𝑌 ∈ (Base‘(Scalar‘𝑀)))
10 fvexd 6906 . . . 4 ((𝑀 ∈ LMod ∧ 𝑉𝐵𝑌𝑅) → (Base‘(Scalar‘𝑀)) ∈ V)
11 eqid 2728 . . . . 5 {⟨𝑉, 𝑌⟩} = {⟨𝑉, 𝑌⟩}
1211mapsnop 47402 . . . 4 ((𝑉𝐵𝑌 ∈ (Base‘(Scalar‘𝑀)) ∧ (Base‘(Scalar‘𝑀)) ∈ V) → {⟨𝑉, 𝑌⟩} ∈ ((Base‘(Scalar‘𝑀)) ↑m {𝑉}))
132, 9, 10, 12syl3anc 1369 . . 3 ((𝑀 ∈ LMod ∧ 𝑉𝐵𝑌𝑅) → {⟨𝑉, 𝑌⟩} ∈ ((Base‘(Scalar‘𝑀)) ↑m {𝑉}))
14 snelpwi 5439 . . . . 5 (𝑉 ∈ (Base‘𝑀) → {𝑉} ∈ 𝒫 (Base‘𝑀))
15 lincvalsn.b . . . . 5 𝐵 = (Base‘𝑀)
1614, 15eleq2s 2847 . . . 4 (𝑉𝐵 → {𝑉} ∈ 𝒫 (Base‘𝑀))
17163ad2ant2 1132 . . 3 ((𝑀 ∈ LMod ∧ 𝑉𝐵𝑌𝑅) → {𝑉} ∈ 𝒫 (Base‘𝑀))
18 lincval 47471 . . 3 ((𝑀 ∈ LMod ∧ {⟨𝑉, 𝑌⟩} ∈ ((Base‘(Scalar‘𝑀)) ↑m {𝑉}) ∧ {𝑉} ∈ 𝒫 (Base‘𝑀)) → ({⟨𝑉, 𝑌⟩} ( linC ‘𝑀){𝑉}) = (𝑀 Σg (𝑣 ∈ {𝑉} ↦ (({⟨𝑉, 𝑌⟩}‘𝑣)( ·𝑠𝑀)𝑣))))
191, 13, 17, 18syl3anc 1369 . 2 ((𝑀 ∈ LMod ∧ 𝑉𝐵𝑌𝑅) → ({⟨𝑉, 𝑌⟩} ( linC ‘𝑀){𝑉}) = (𝑀 Σg (𝑣 ∈ {𝑉} ↦ (({⟨𝑉, 𝑌⟩}‘𝑣)( ·𝑠𝑀)𝑣))))
20 lmodgrp 20743 . . . . 5 (𝑀 ∈ LMod → 𝑀 ∈ Grp)
2120grpmndd 18896 . . . 4 (𝑀 ∈ LMod → 𝑀 ∈ Mnd)
22213ad2ant1 1131 . . 3 ((𝑀 ∈ LMod ∧ 𝑉𝐵𝑌𝑅) → 𝑀 ∈ Mnd)
23 fvsng 7183 . . . . . 6 ((𝑉𝐵𝑌𝑅) → ({⟨𝑉, 𝑌⟩}‘𝑉) = 𝑌)
24233adant1 1128 . . . . 5 ((𝑀 ∈ LMod ∧ 𝑉𝐵𝑌𝑅) → ({⟨𝑉, 𝑌⟩}‘𝑉) = 𝑌)
2524oveq1d 7429 . . . 4 ((𝑀 ∈ LMod ∧ 𝑉𝐵𝑌𝑅) → (({⟨𝑉, 𝑌⟩}‘𝑉)( ·𝑠𝑀)𝑉) = (𝑌( ·𝑠𝑀)𝑉))
26 eqid 2728 . . . . . 6 ( ·𝑠𝑀) = ( ·𝑠𝑀)
2715, 4, 26, 3lmodvscl 20754 . . . . 5 ((𝑀 ∈ LMod ∧ 𝑌𝑅𝑉𝐵) → (𝑌( ·𝑠𝑀)𝑉) ∈ 𝐵)
28273com23 1124 . . . 4 ((𝑀 ∈ LMod ∧ 𝑉𝐵𝑌𝑅) → (𝑌( ·𝑠𝑀)𝑉) ∈ 𝐵)
2925, 28eqeltrd 2829 . . 3 ((𝑀 ∈ LMod ∧ 𝑉𝐵𝑌𝑅) → (({⟨𝑉, 𝑌⟩}‘𝑉)( ·𝑠𝑀)𝑉) ∈ 𝐵)
30 fveq2 6891 . . . . 5 (𝑣 = 𝑉 → ({⟨𝑉, 𝑌⟩}‘𝑣) = ({⟨𝑉, 𝑌⟩}‘𝑉))
31 id 22 . . . . 5 (𝑣 = 𝑉𝑣 = 𝑉)
3230, 31oveq12d 7432 . . . 4 (𝑣 = 𝑉 → (({⟨𝑉, 𝑌⟩}‘𝑣)( ·𝑠𝑀)𝑣) = (({⟨𝑉, 𝑌⟩}‘𝑉)( ·𝑠𝑀)𝑉))
3315, 32gsumsn 19902 . . 3 ((𝑀 ∈ Mnd ∧ 𝑉𝐵 ∧ (({⟨𝑉, 𝑌⟩}‘𝑉)( ·𝑠𝑀)𝑉) ∈ 𝐵) → (𝑀 Σg (𝑣 ∈ {𝑉} ↦ (({⟨𝑉, 𝑌⟩}‘𝑣)( ·𝑠𝑀)𝑣))) = (({⟨𝑉, 𝑌⟩}‘𝑉)( ·𝑠𝑀)𝑉))
3422, 2, 29, 33syl3anc 1369 . 2 ((𝑀 ∈ LMod ∧ 𝑉𝐵𝑌𝑅) → (𝑀 Σg (𝑣 ∈ {𝑉} ↦ (({⟨𝑉, 𝑌⟩}‘𝑣)( ·𝑠𝑀)𝑣))) = (({⟨𝑉, 𝑌⟩}‘𝑉)( ·𝑠𝑀)𝑉))
35 lincvalsn.t . . . . 5 · = ( ·𝑠𝑀)
3635eqcomi 2737 . . . 4 ( ·𝑠𝑀) = ·
3736a1i 11 . . 3 ((𝑀 ∈ LMod ∧ 𝑉𝐵𝑌𝑅) → ( ·𝑠𝑀) = · )
38 eqidd 2729 . . 3 ((𝑀 ∈ LMod ∧ 𝑉𝐵𝑌𝑅) → 𝑉 = 𝑉)
3937, 24, 38oveq123d 7435 . 2 ((𝑀 ∈ LMod ∧ 𝑉𝐵𝑌𝑅) → (({⟨𝑉, 𝑌⟩}‘𝑉)( ·𝑠𝑀)𝑉) = (𝑌 · 𝑉))
4019, 34, 393eqtrd 2772 1 ((𝑀 ∈ LMod ∧ 𝑉𝐵𝑌𝑅) → ({⟨𝑉, 𝑌⟩} ( linC ‘𝑀){𝑉}) = (𝑌 · 𝑉))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1085   = wceq 1534  wcel 2099  Vcvv 3470  𝒫 cpw 4598  {csn 4624  cop 4630  cmpt 5225  cfv 6542  (class class class)co 7414  m cmap 8838  Basecbs 17173  Scalarcsca 17229   ·𝑠 cvsca 17230   Σg cgsu 17415  Mndcmnd 18687  LModclmod 20736   linC clinc 47466
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-rep 5279  ax-sep 5293  ax-nul 5300  ax-pow 5359  ax-pr 5423  ax-un 7734  ax-cnex 11188  ax-resscn 11189  ax-1cn 11190  ax-icn 11191  ax-addcl 11192  ax-addrcl 11193  ax-mulcl 11194  ax-mulrcl 11195  ax-mulcom 11196  ax-addass 11197  ax-mulass 11198  ax-distr 11199  ax-i2m1 11200  ax-1ne0 11201  ax-1rid 11202  ax-rnegex 11203  ax-rrecex 11204  ax-cnre 11205  ax-pre-lttri 11206  ax-pre-lttrn 11207  ax-pre-ltadd 11208  ax-pre-mulgt0 11209
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2937  df-nel 3043  df-ral 3058  df-rex 3067  df-rmo 3372  df-reu 3373  df-rab 3429  df-v 3472  df-sbc 3776  df-csb 3891  df-dif 3948  df-un 3950  df-in 3952  df-ss 3962  df-pss 3964  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-int 4945  df-iun 4993  df-br 5143  df-opab 5205  df-mpt 5226  df-tr 5260  df-id 5570  df-eprel 5576  df-po 5584  df-so 5585  df-fr 5627  df-se 5628  df-we 5629  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-pred 6299  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-isom 6551  df-riota 7370  df-ov 7417  df-oprab 7418  df-mpo 7419  df-om 7865  df-1st 7987  df-2nd 7988  df-supp 8160  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-er 8718  df-map 8840  df-en 8958  df-dom 8959  df-sdom 8960  df-fin 8961  df-oi 9527  df-card 9956  df-pnf 11274  df-mnf 11275  df-xr 11276  df-ltxr 11277  df-le 11278  df-sub 11470  df-neg 11471  df-nn 12237  df-n0 12497  df-z 12583  df-uz 12847  df-fz 13511  df-fzo 13654  df-seq 13993  df-hash 14316  df-0g 17416  df-gsum 17417  df-mgm 18593  df-sgrp 18672  df-mnd 18688  df-grp 18886  df-mulg 19017  df-cntz 19261  df-lmod 20738  df-linc 47468
This theorem is referenced by:  lincvalsn  47479  snlindsntorlem  47532  ldepsnlinclem1  47567  ldepsnlinclem2  47568
  Copyright terms: Public domain W3C validator
OSZAR »