![]() |
Mathbox for Jeff Madsen |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > lmclim2 | Structured version Visualization version GIF version |
Description: A sequence in a metric space converges to a point iff the distance between the point and the elements of the sequence converges to 0. (Contributed by Jeff Madsen, 2-Sep-2009.) (Proof shortened by Mario Carneiro, 5-Jun-2014.) |
Ref | Expression |
---|---|
lmclim2.2 | ⊢ (𝜑 → 𝐷 ∈ (Met‘𝑋)) |
lmclim2.3 | ⊢ (𝜑 → 𝐹:ℕ⟶𝑋) |
lmclim2.4 | ⊢ 𝐽 = (MetOpen‘𝐷) |
lmclim2.5 | ⊢ 𝐺 = (𝑥 ∈ ℕ ↦ ((𝐹‘𝑥)𝐷𝑌)) |
lmclim2.6 | ⊢ (𝜑 → 𝑌 ∈ 𝑋) |
Ref | Expression |
---|---|
lmclim2 | ⊢ (𝜑 → (𝐹(⇝𝑡‘𝐽)𝑌 ↔ 𝐺 ⇝ 0)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lmclim2.4 | . . 3 ⊢ 𝐽 = (MetOpen‘𝐷) | |
2 | lmclim2.2 | . . . 4 ⊢ (𝜑 → 𝐷 ∈ (Met‘𝑋)) | |
3 | metxmet 24253 | . . . 4 ⊢ (𝐷 ∈ (Met‘𝑋) → 𝐷 ∈ (∞Met‘𝑋)) | |
4 | 2, 3 | syl 17 | . . 3 ⊢ (𝜑 → 𝐷 ∈ (∞Met‘𝑋)) |
5 | nnuz 12896 | . . 3 ⊢ ℕ = (ℤ≥‘1) | |
6 | 1zzd 12624 | . . 3 ⊢ (𝜑 → 1 ∈ ℤ) | |
7 | eqidd 2729 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝐹‘𝑘) = (𝐹‘𝑘)) | |
8 | lmclim2.3 | . . 3 ⊢ (𝜑 → 𝐹:ℕ⟶𝑋) | |
9 | 1, 4, 5, 6, 7, 8 | lmmbrf 25203 | . 2 ⊢ (𝜑 → (𝐹(⇝𝑡‘𝐽)𝑌 ↔ (𝑌 ∈ 𝑋 ∧ ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ≥‘𝑗)((𝐹‘𝑘)𝐷𝑌) < 𝑥))) |
10 | lmclim2.5 | . . . . . 6 ⊢ 𝐺 = (𝑥 ∈ ℕ ↦ ((𝐹‘𝑥)𝐷𝑌)) | |
11 | nnex 12249 | . . . . . . 7 ⊢ ℕ ∈ V | |
12 | 11 | mptex 7235 | . . . . . 6 ⊢ (𝑥 ∈ ℕ ↦ ((𝐹‘𝑥)𝐷𝑌)) ∈ V |
13 | 10, 12 | eqeltri 2825 | . . . . 5 ⊢ 𝐺 ∈ V |
14 | 13 | a1i 11 | . . . 4 ⊢ (𝜑 → 𝐺 ∈ V) |
15 | fveq2 6897 | . . . . . . 7 ⊢ (𝑥 = 𝑘 → (𝐹‘𝑥) = (𝐹‘𝑘)) | |
16 | 15 | oveq1d 7435 | . . . . . 6 ⊢ (𝑥 = 𝑘 → ((𝐹‘𝑥)𝐷𝑌) = ((𝐹‘𝑘)𝐷𝑌)) |
17 | ovex 7453 | . . . . . 6 ⊢ ((𝐹‘𝑘)𝐷𝑌) ∈ V | |
18 | 16, 10, 17 | fvmpt 7005 | . . . . 5 ⊢ (𝑘 ∈ ℕ → (𝐺‘𝑘) = ((𝐹‘𝑘)𝐷𝑌)) |
19 | 18 | adantl 481 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝐺‘𝑘) = ((𝐹‘𝑘)𝐷𝑌)) |
20 | 2 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → 𝐷 ∈ (Met‘𝑋)) |
21 | 8 | ffvelcdmda 7094 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝐹‘𝑘) ∈ 𝑋) |
22 | lmclim2.6 | . . . . . . 7 ⊢ (𝜑 → 𝑌 ∈ 𝑋) | |
23 | 22 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → 𝑌 ∈ 𝑋) |
24 | metcl 24251 | . . . . . 6 ⊢ ((𝐷 ∈ (Met‘𝑋) ∧ (𝐹‘𝑘) ∈ 𝑋 ∧ 𝑌 ∈ 𝑋) → ((𝐹‘𝑘)𝐷𝑌) ∈ ℝ) | |
25 | 20, 21, 23, 24 | syl3anc 1369 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → ((𝐹‘𝑘)𝐷𝑌) ∈ ℝ) |
26 | 25 | recnd 11273 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → ((𝐹‘𝑘)𝐷𝑌) ∈ ℂ) |
27 | 5, 6, 14, 19, 26 | clim0c 15484 | . . 3 ⊢ (𝜑 → (𝐺 ⇝ 0 ↔ ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ≥‘𝑗)(abs‘((𝐹‘𝑘)𝐷𝑌)) < 𝑥)) |
28 | eluznn 12933 | . . . . . . . 8 ⊢ ((𝑗 ∈ ℕ ∧ 𝑘 ∈ (ℤ≥‘𝑗)) → 𝑘 ∈ ℕ) | |
29 | metge0 24264 | . . . . . . . . . . 11 ⊢ ((𝐷 ∈ (Met‘𝑋) ∧ (𝐹‘𝑘) ∈ 𝑋 ∧ 𝑌 ∈ 𝑋) → 0 ≤ ((𝐹‘𝑘)𝐷𝑌)) | |
30 | 20, 21, 23, 29 | syl3anc 1369 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → 0 ≤ ((𝐹‘𝑘)𝐷𝑌)) |
31 | 25, 30 | absidd 15402 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (abs‘((𝐹‘𝑘)𝐷𝑌)) = ((𝐹‘𝑘)𝐷𝑌)) |
32 | 31 | breq1d 5158 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → ((abs‘((𝐹‘𝑘)𝐷𝑌)) < 𝑥 ↔ ((𝐹‘𝑘)𝐷𝑌) < 𝑥)) |
33 | 28, 32 | sylan2 592 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑘 ∈ (ℤ≥‘𝑗))) → ((abs‘((𝐹‘𝑘)𝐷𝑌)) < 𝑥 ↔ ((𝐹‘𝑘)𝐷𝑌) < 𝑥)) |
34 | 33 | anassrs 467 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ≥‘𝑗)) → ((abs‘((𝐹‘𝑘)𝐷𝑌)) < 𝑥 ↔ ((𝐹‘𝑘)𝐷𝑌) < 𝑥)) |
35 | 34 | ralbidva 3172 | . . . . 5 ⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → (∀𝑘 ∈ (ℤ≥‘𝑗)(abs‘((𝐹‘𝑘)𝐷𝑌)) < 𝑥 ↔ ∀𝑘 ∈ (ℤ≥‘𝑗)((𝐹‘𝑘)𝐷𝑌) < 𝑥)) |
36 | 35 | rexbidva 3173 | . . . 4 ⊢ (𝜑 → (∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ≥‘𝑗)(abs‘((𝐹‘𝑘)𝐷𝑌)) < 𝑥 ↔ ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ≥‘𝑗)((𝐹‘𝑘)𝐷𝑌) < 𝑥)) |
37 | 36 | ralbidv 3174 | . . 3 ⊢ (𝜑 → (∀𝑥 ∈ ℝ+ ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ≥‘𝑗)(abs‘((𝐹‘𝑘)𝐷𝑌)) < 𝑥 ↔ ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ≥‘𝑗)((𝐹‘𝑘)𝐷𝑌) < 𝑥)) |
38 | 22 | biantrurd 532 | . . 3 ⊢ (𝜑 → (∀𝑥 ∈ ℝ+ ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ≥‘𝑗)((𝐹‘𝑘)𝐷𝑌) < 𝑥 ↔ (𝑌 ∈ 𝑋 ∧ ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ≥‘𝑗)((𝐹‘𝑘)𝐷𝑌) < 𝑥))) |
39 | 27, 37, 38 | 3bitrrd 306 | . 2 ⊢ (𝜑 → ((𝑌 ∈ 𝑋 ∧ ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ≥‘𝑗)((𝐹‘𝑘)𝐷𝑌) < 𝑥) ↔ 𝐺 ⇝ 0)) |
40 | 9, 39 | bitrd 279 | 1 ⊢ (𝜑 → (𝐹(⇝𝑡‘𝐽)𝑌 ↔ 𝐺 ⇝ 0)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1534 ∈ wcel 2099 ∀wral 3058 ∃wrex 3067 Vcvv 3471 class class class wbr 5148 ↦ cmpt 5231 ⟶wf 6544 ‘cfv 6548 (class class class)co 7420 ℝcr 11138 0cc0 11139 1c1 11140 < clt 11279 ≤ cle 11280 ℕcn 12243 ℤ≥cuz 12853 ℝ+crp 13007 abscabs 15214 ⇝ cli 15461 ∞Metcxmet 21264 Metcmet 21265 MetOpencmopn 21269 ⇝𝑡clm 23143 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5365 ax-pr 5429 ax-un 7740 ax-cnex 11195 ax-resscn 11196 ax-1cn 11197 ax-icn 11198 ax-addcl 11199 ax-addrcl 11200 ax-mulcl 11201 ax-mulrcl 11202 ax-mulcom 11203 ax-addass 11204 ax-mulass 11205 ax-distr 11206 ax-i2m1 11207 ax-1ne0 11208 ax-1rid 11209 ax-rnegex 11210 ax-rrecex 11211 ax-cnre 11212 ax-pre-lttri 11213 ax-pre-lttrn 11214 ax-pre-ltadd 11215 ax-pre-mulgt0 11216 ax-pre-sup 11217 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-rmo 3373 df-reu 3374 df-rab 3430 df-v 3473 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4909 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5576 df-eprel 5582 df-po 5590 df-so 5591 df-fr 5633 df-we 5635 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-pred 6305 df-ord 6372 df-on 6373 df-lim 6374 df-suc 6375 df-iota 6500 df-fun 6550 df-fn 6551 df-f 6552 df-f1 6553 df-fo 6554 df-f1o 6555 df-fv 6556 df-riota 7376 df-ov 7423 df-oprab 7424 df-mpo 7425 df-om 7871 df-1st 7993 df-2nd 7994 df-frecs 8287 df-wrecs 8318 df-recs 8392 df-rdg 8431 df-er 8725 df-map 8847 df-pm 8848 df-en 8965 df-dom 8966 df-sdom 8967 df-sup 9466 df-inf 9467 df-pnf 11281 df-mnf 11282 df-xr 11283 df-ltxr 11284 df-le 11285 df-sub 11477 df-neg 11478 df-div 11903 df-nn 12244 df-2 12306 df-3 12307 df-n0 12504 df-z 12590 df-uz 12854 df-q 12964 df-rp 13008 df-xneg 13125 df-xadd 13126 df-xmul 13127 df-seq 14000 df-exp 14060 df-cj 15079 df-re 15080 df-im 15081 df-sqrt 15215 df-abs 15216 df-clim 15465 df-topgen 17425 df-psmet 21271 df-xmet 21272 df-met 21273 df-bl 21274 df-mopn 21275 df-top 22809 df-topon 22826 df-bases 22862 df-lm 23146 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |