![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > lmireu | Structured version Visualization version GIF version |
Description: Any point has a unique antecedent through line mirroring. Theorem 10.6 of [Schwabhauser] p. 89. (Contributed by Thierry Arnoux, 11-Dec-2019.) |
Ref | Expression |
---|---|
ismid.p | ⊢ 𝑃 = (Base‘𝐺) |
ismid.d | ⊢ − = (dist‘𝐺) |
ismid.i | ⊢ 𝐼 = (Itv‘𝐺) |
ismid.g | ⊢ (𝜑 → 𝐺 ∈ TarskiG) |
ismid.1 | ⊢ (𝜑 → 𝐺DimTarskiG≥2) |
lmif.m | ⊢ 𝑀 = ((lInvG‘𝐺)‘𝐷) |
lmif.l | ⊢ 𝐿 = (LineG‘𝐺) |
lmif.d | ⊢ (𝜑 → 𝐷 ∈ ran 𝐿) |
lmicl.1 | ⊢ (𝜑 → 𝐴 ∈ 𝑃) |
Ref | Expression |
---|---|
lmireu | ⊢ (𝜑 → ∃!𝑏 ∈ 𝑃 (𝑀‘𝑏) = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ismid.p | . . 3 ⊢ 𝑃 = (Base‘𝐺) | |
2 | ismid.d | . . 3 ⊢ − = (dist‘𝐺) | |
3 | ismid.i | . . 3 ⊢ 𝐼 = (Itv‘𝐺) | |
4 | ismid.g | . . 3 ⊢ (𝜑 → 𝐺 ∈ TarskiG) | |
5 | ismid.1 | . . 3 ⊢ (𝜑 → 𝐺DimTarskiG≥2) | |
6 | lmif.m | . . 3 ⊢ 𝑀 = ((lInvG‘𝐺)‘𝐷) | |
7 | lmif.l | . . 3 ⊢ 𝐿 = (LineG‘𝐺) | |
8 | lmif.d | . . 3 ⊢ (𝜑 → 𝐷 ∈ ran 𝐿) | |
9 | lmicl.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑃) | |
10 | 1, 2, 3, 4, 5, 6, 7, 8, 9 | lmicl 28610 | . 2 ⊢ (𝜑 → (𝑀‘𝐴) ∈ 𝑃) |
11 | 1, 2, 3, 4, 5, 6, 7, 8, 9 | lmilmi 28613 | . 2 ⊢ (𝜑 → (𝑀‘(𝑀‘𝐴)) = 𝐴) |
12 | 4 | ad2antrr 724 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑏 ∈ 𝑃) ∧ (𝑀‘𝑏) = 𝐴) → 𝐺 ∈ TarskiG) |
13 | 5 | ad2antrr 724 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑏 ∈ 𝑃) ∧ (𝑀‘𝑏) = 𝐴) → 𝐺DimTarskiG≥2) |
14 | 8 | ad2antrr 724 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑏 ∈ 𝑃) ∧ (𝑀‘𝑏) = 𝐴) → 𝐷 ∈ ran 𝐿) |
15 | simplr 767 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑏 ∈ 𝑃) ∧ (𝑀‘𝑏) = 𝐴) → 𝑏 ∈ 𝑃) | |
16 | 1, 2, 3, 12, 13, 6, 7, 14, 15 | lmilmi 28613 | . . . . 5 ⊢ (((𝜑 ∧ 𝑏 ∈ 𝑃) ∧ (𝑀‘𝑏) = 𝐴) → (𝑀‘(𝑀‘𝑏)) = 𝑏) |
17 | simpr 483 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑏 ∈ 𝑃) ∧ (𝑀‘𝑏) = 𝐴) → (𝑀‘𝑏) = 𝐴) | |
18 | 17 | fveq2d 6906 | . . . . 5 ⊢ (((𝜑 ∧ 𝑏 ∈ 𝑃) ∧ (𝑀‘𝑏) = 𝐴) → (𝑀‘(𝑀‘𝑏)) = (𝑀‘𝐴)) |
19 | 16, 18 | eqtr3d 2770 | . . . 4 ⊢ (((𝜑 ∧ 𝑏 ∈ 𝑃) ∧ (𝑀‘𝑏) = 𝐴) → 𝑏 = (𝑀‘𝐴)) |
20 | 19 | ex 411 | . . 3 ⊢ ((𝜑 ∧ 𝑏 ∈ 𝑃) → ((𝑀‘𝑏) = 𝐴 → 𝑏 = (𝑀‘𝐴))) |
21 | 20 | ralrimiva 3143 | . 2 ⊢ (𝜑 → ∀𝑏 ∈ 𝑃 ((𝑀‘𝑏) = 𝐴 → 𝑏 = (𝑀‘𝐴))) |
22 | fveqeq2 6911 | . . 3 ⊢ (𝑏 = (𝑀‘𝐴) → ((𝑀‘𝑏) = 𝐴 ↔ (𝑀‘(𝑀‘𝐴)) = 𝐴)) | |
23 | 22 | eqreu 3726 | . 2 ⊢ (((𝑀‘𝐴) ∈ 𝑃 ∧ (𝑀‘(𝑀‘𝐴)) = 𝐴 ∧ ∀𝑏 ∈ 𝑃 ((𝑀‘𝑏) = 𝐴 → 𝑏 = (𝑀‘𝐴))) → ∃!𝑏 ∈ 𝑃 (𝑀‘𝑏) = 𝐴) |
24 | 10, 11, 21, 23 | syl3anc 1368 | 1 ⊢ (𝜑 → ∃!𝑏 ∈ 𝑃 (𝑀‘𝑏) = 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 = wceq 1533 ∈ wcel 2098 ∀wral 3058 ∃!wreu 3372 class class class wbr 5152 ran crn 5683 ‘cfv 6553 2c2 12305 Basecbs 17187 distcds 17249 TarskiGcstrkg 28251 DimTarskiG≥cstrkgld 28255 Itvcitv 28257 LineGclng 28258 lInvGclmi 28597 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2699 ax-rep 5289 ax-sep 5303 ax-nul 5310 ax-pow 5369 ax-pr 5433 ax-un 7746 ax-cnex 11202 ax-resscn 11203 ax-1cn 11204 ax-icn 11205 ax-addcl 11206 ax-addrcl 11207 ax-mulcl 11208 ax-mulrcl 11209 ax-mulcom 11210 ax-addass 11211 ax-mulass 11212 ax-distr 11213 ax-i2m1 11214 ax-1ne0 11215 ax-1rid 11216 ax-rnegex 11217 ax-rrecex 11218 ax-cnre 11219 ax-pre-lttri 11220 ax-pre-lttrn 11221 ax-pre-ltadd 11222 ax-pre-mulgt0 11223 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2529 df-eu 2558 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-rmo 3374 df-reu 3375 df-rab 3431 df-v 3475 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4327 df-if 4533 df-pw 4608 df-sn 4633 df-pr 4635 df-tp 4637 df-op 4639 df-uni 4913 df-int 4954 df-iun 5002 df-br 5153 df-opab 5215 df-mpt 5236 df-tr 5270 df-id 5580 df-eprel 5586 df-po 5594 df-so 5595 df-fr 5637 df-we 5639 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-rn 5693 df-res 5694 df-ima 5695 df-pred 6310 df-ord 6377 df-on 6378 df-lim 6379 df-suc 6380 df-iota 6505 df-fun 6555 df-fn 6556 df-f 6557 df-f1 6558 df-fo 6559 df-f1o 6560 df-fv 6561 df-riota 7382 df-ov 7429 df-oprab 7430 df-mpo 7431 df-om 7877 df-1st 7999 df-2nd 8000 df-frecs 8293 df-wrecs 8324 df-recs 8398 df-rdg 8437 df-1o 8493 df-oadd 8497 df-er 8731 df-map 8853 df-pm 8854 df-en 8971 df-dom 8972 df-sdom 8973 df-fin 8974 df-dju 9932 df-card 9970 df-pnf 11288 df-mnf 11289 df-xr 11290 df-ltxr 11291 df-le 11292 df-sub 11484 df-neg 11485 df-nn 12251 df-2 12313 df-3 12314 df-n0 12511 df-xnn0 12583 df-z 12597 df-uz 12861 df-fz 13525 df-fzo 13668 df-hash 14330 df-word 14505 df-concat 14561 df-s1 14586 df-s2 14839 df-s3 14840 df-trkgc 28272 df-trkgb 28273 df-trkgcb 28274 df-trkgld 28276 df-trkg 28277 df-cgrg 28335 df-leg 28407 df-mir 28477 df-rag 28518 df-perpg 28520 df-mid 28598 df-lmi 28599 |
This theorem is referenced by: lmieq 28615 |
Copyright terms: Public domain | W3C validator |