![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > lmodnegadd | Structured version Visualization version GIF version |
Description: Distribute negation through addition of scalar products. (Contributed by NM, 9-Apr-2015.) |
Ref | Expression |
---|---|
lmodnegadd.v | ⊢ 𝑉 = (Base‘𝑊) |
lmodnegadd.p | ⊢ + = (+g‘𝑊) |
lmodnegadd.t | ⊢ · = ( ·𝑠 ‘𝑊) |
lmodnegadd.n | ⊢ 𝑁 = (invg‘𝑊) |
lmodnegadd.r | ⊢ 𝑅 = (Scalar‘𝑊) |
lmodnegadd.k | ⊢ 𝐾 = (Base‘𝑅) |
lmodnegadd.i | ⊢ 𝐼 = (invg‘𝑅) |
lmodnegadd.w | ⊢ (𝜑 → 𝑊 ∈ LMod) |
lmodnegadd.a | ⊢ (𝜑 → 𝐴 ∈ 𝐾) |
lmodnegadd.b | ⊢ (𝜑 → 𝐵 ∈ 𝐾) |
lmodnegadd.x | ⊢ (𝜑 → 𝑋 ∈ 𝑉) |
lmodnegadd.y | ⊢ (𝜑 → 𝑌 ∈ 𝑉) |
Ref | Expression |
---|---|
lmodnegadd | ⊢ (𝜑 → (𝑁‘((𝐴 · 𝑋) + (𝐵 · 𝑌))) = (((𝐼‘𝐴) · 𝑋) + ((𝐼‘𝐵) · 𝑌))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lmodnegadd.w | . . . 4 ⊢ (𝜑 → 𝑊 ∈ LMod) | |
2 | lmodabl 20791 | . . . 4 ⊢ (𝑊 ∈ LMod → 𝑊 ∈ Abel) | |
3 | 1, 2 | syl 17 | . . 3 ⊢ (𝜑 → 𝑊 ∈ Abel) |
4 | lmodnegadd.a | . . . 4 ⊢ (𝜑 → 𝐴 ∈ 𝐾) | |
5 | lmodnegadd.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝑉) | |
6 | lmodnegadd.v | . . . . 5 ⊢ 𝑉 = (Base‘𝑊) | |
7 | lmodnegadd.r | . . . . 5 ⊢ 𝑅 = (Scalar‘𝑊) | |
8 | lmodnegadd.t | . . . . 5 ⊢ · = ( ·𝑠 ‘𝑊) | |
9 | lmodnegadd.k | . . . . 5 ⊢ 𝐾 = (Base‘𝑅) | |
10 | 6, 7, 8, 9 | lmodvscl 20760 | . . . 4 ⊢ ((𝑊 ∈ LMod ∧ 𝐴 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉) → (𝐴 · 𝑋) ∈ 𝑉) |
11 | 1, 4, 5, 10 | syl3anc 1369 | . . 3 ⊢ (𝜑 → (𝐴 · 𝑋) ∈ 𝑉) |
12 | lmodnegadd.b | . . . 4 ⊢ (𝜑 → 𝐵 ∈ 𝐾) | |
13 | lmodnegadd.y | . . . 4 ⊢ (𝜑 → 𝑌 ∈ 𝑉) | |
14 | 6, 7, 8, 9 | lmodvscl 20760 | . . . 4 ⊢ ((𝑊 ∈ LMod ∧ 𝐵 ∈ 𝐾 ∧ 𝑌 ∈ 𝑉) → (𝐵 · 𝑌) ∈ 𝑉) |
15 | 1, 12, 13, 14 | syl3anc 1369 | . . 3 ⊢ (𝜑 → (𝐵 · 𝑌) ∈ 𝑉) |
16 | lmodnegadd.p | . . . 4 ⊢ + = (+g‘𝑊) | |
17 | lmodnegadd.n | . . . 4 ⊢ 𝑁 = (invg‘𝑊) | |
18 | 6, 16, 17 | ablinvadd 19761 | . . 3 ⊢ ((𝑊 ∈ Abel ∧ (𝐴 · 𝑋) ∈ 𝑉 ∧ (𝐵 · 𝑌) ∈ 𝑉) → (𝑁‘((𝐴 · 𝑋) + (𝐵 · 𝑌))) = ((𝑁‘(𝐴 · 𝑋)) + (𝑁‘(𝐵 · 𝑌)))) |
19 | 3, 11, 15, 18 | syl3anc 1369 | . 2 ⊢ (𝜑 → (𝑁‘((𝐴 · 𝑋) + (𝐵 · 𝑌))) = ((𝑁‘(𝐴 · 𝑋)) + (𝑁‘(𝐵 · 𝑌)))) |
20 | lmodnegadd.i | . . . 4 ⊢ 𝐼 = (invg‘𝑅) | |
21 | 6, 7, 8, 17, 9, 20, 1, 5, 4 | lmodvsneg 20788 | . . 3 ⊢ (𝜑 → (𝑁‘(𝐴 · 𝑋)) = ((𝐼‘𝐴) · 𝑋)) |
22 | 6, 7, 8, 17, 9, 20, 1, 13, 12 | lmodvsneg 20788 | . . 3 ⊢ (𝜑 → (𝑁‘(𝐵 · 𝑌)) = ((𝐼‘𝐵) · 𝑌)) |
23 | 21, 22 | oveq12d 7438 | . 2 ⊢ (𝜑 → ((𝑁‘(𝐴 · 𝑋)) + (𝑁‘(𝐵 · 𝑌))) = (((𝐼‘𝐴) · 𝑋) + ((𝐼‘𝐵) · 𝑌))) |
24 | 19, 23 | eqtrd 2768 | 1 ⊢ (𝜑 → (𝑁‘((𝐴 · 𝑋) + (𝐵 · 𝑌))) = (((𝐼‘𝐴) · 𝑋) + ((𝐼‘𝐵) · 𝑌))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1534 ∈ wcel 2099 ‘cfv 6548 (class class class)co 7420 Basecbs 17179 +gcplusg 17232 Scalarcsca 17235 ·𝑠 cvsca 17236 invgcminusg 18890 Abelcabl 19735 LModclmod 20742 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-sep 5299 ax-nul 5306 ax-pow 5365 ax-pr 5429 ax-un 7740 ax-cnex 11194 ax-resscn 11195 ax-1cn 11196 ax-icn 11197 ax-addcl 11198 ax-addrcl 11199 ax-mulcl 11200 ax-mulrcl 11201 ax-mulcom 11202 ax-addass 11203 ax-mulass 11204 ax-distr 11205 ax-i2m1 11206 ax-1ne0 11207 ax-1rid 11208 ax-rnegex 11209 ax-rrecex 11210 ax-cnre 11211 ax-pre-lttri 11212 ax-pre-lttrn 11213 ax-pre-ltadd 11214 ax-pre-mulgt0 11215 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-rmo 3373 df-reu 3374 df-rab 3430 df-v 3473 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4909 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5576 df-eprel 5582 df-po 5590 df-so 5591 df-fr 5633 df-we 5635 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-pred 6305 df-ord 6372 df-on 6373 df-lim 6374 df-suc 6375 df-iota 6500 df-fun 6550 df-fn 6551 df-f 6552 df-f1 6553 df-fo 6554 df-f1o 6555 df-fv 6556 df-riota 7376 df-ov 7423 df-oprab 7424 df-mpo 7425 df-om 7871 df-2nd 7994 df-frecs 8286 df-wrecs 8317 df-recs 8391 df-rdg 8430 df-er 8724 df-en 8964 df-dom 8965 df-sdom 8966 df-pnf 11280 df-mnf 11281 df-xr 11282 df-ltxr 11283 df-le 11284 df-sub 11476 df-neg 11477 df-nn 12243 df-2 12305 df-sets 17132 df-slot 17150 df-ndx 17162 df-base 17180 df-plusg 17245 df-0g 17422 df-mgm 18599 df-sgrp 18678 df-mnd 18694 df-grp 18892 df-minusg 18893 df-cmn 19736 df-abl 19737 df-mgp 20074 df-rng 20092 df-ur 20121 df-ring 20174 df-lmod 20744 |
This theorem is referenced by: baerlem3lem1 41180 |
Copyright terms: Public domain | W3C validator |