![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > logcnlem2 | Structured version Visualization version GIF version |
Description: Lemma for logcn 26574. (Contributed by Mario Carneiro, 25-Feb-2015.) |
Ref | Expression |
---|---|
logcn.d | ⊢ 𝐷 = (ℂ ∖ (-∞(,]0)) |
logcnlem.s | ⊢ 𝑆 = if(𝐴 ∈ ℝ+, 𝐴, (abs‘(ℑ‘𝐴))) |
logcnlem.t | ⊢ 𝑇 = ((abs‘𝐴) · (𝑅 / (1 + 𝑅))) |
logcnlem.a | ⊢ (𝜑 → 𝐴 ∈ 𝐷) |
logcnlem.r | ⊢ (𝜑 → 𝑅 ∈ ℝ+) |
Ref | Expression |
---|---|
logcnlem2 | ⊢ (𝜑 → if(𝑆 ≤ 𝑇, 𝑆, 𝑇) ∈ ℝ+) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | logcnlem.s | . . 3 ⊢ 𝑆 = if(𝐴 ∈ ℝ+, 𝐴, (abs‘(ℑ‘𝐴))) | |
2 | simpr 484 | . . . 4 ⊢ ((𝜑 ∧ 𝐴 ∈ ℝ+) → 𝐴 ∈ ℝ+) | |
3 | logcnlem.a | . . . . . . . . 9 ⊢ (𝜑 → 𝐴 ∈ 𝐷) | |
4 | logcn.d | . . . . . . . . . . 11 ⊢ 𝐷 = (ℂ ∖ (-∞(,]0)) | |
5 | 4 | ellogdm 26566 | . . . . . . . . . 10 ⊢ (𝐴 ∈ 𝐷 ↔ (𝐴 ∈ ℂ ∧ (𝐴 ∈ ℝ → 𝐴 ∈ ℝ+))) |
6 | 5 | simplbi 497 | . . . . . . . . 9 ⊢ (𝐴 ∈ 𝐷 → 𝐴 ∈ ℂ) |
7 | 3, 6 | syl 17 | . . . . . . . 8 ⊢ (𝜑 → 𝐴 ∈ ℂ) |
8 | 7 | imcld 15168 | . . . . . . 7 ⊢ (𝜑 → (ℑ‘𝐴) ∈ ℝ) |
9 | 8 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ ¬ 𝐴 ∈ ℝ+) → (ℑ‘𝐴) ∈ ℝ) |
10 | 9 | recnd 11266 | . . . . 5 ⊢ ((𝜑 ∧ ¬ 𝐴 ∈ ℝ+) → (ℑ‘𝐴) ∈ ℂ) |
11 | reim0b 15092 | . . . . . . . . 9 ⊢ (𝐴 ∈ ℂ → (𝐴 ∈ ℝ ↔ (ℑ‘𝐴) = 0)) | |
12 | 7, 11 | syl 17 | . . . . . . . 8 ⊢ (𝜑 → (𝐴 ∈ ℝ ↔ (ℑ‘𝐴) = 0)) |
13 | 5 | simprbi 496 | . . . . . . . . 9 ⊢ (𝐴 ∈ 𝐷 → (𝐴 ∈ ℝ → 𝐴 ∈ ℝ+)) |
14 | 3, 13 | syl 17 | . . . . . . . 8 ⊢ (𝜑 → (𝐴 ∈ ℝ → 𝐴 ∈ ℝ+)) |
15 | 12, 14 | sylbird 260 | . . . . . . 7 ⊢ (𝜑 → ((ℑ‘𝐴) = 0 → 𝐴 ∈ ℝ+)) |
16 | 15 | necon3bd 2950 | . . . . . 6 ⊢ (𝜑 → (¬ 𝐴 ∈ ℝ+ → (ℑ‘𝐴) ≠ 0)) |
17 | 16 | imp 406 | . . . . 5 ⊢ ((𝜑 ∧ ¬ 𝐴 ∈ ℝ+) → (ℑ‘𝐴) ≠ 0) |
18 | 10, 17 | absrpcld 15421 | . . . 4 ⊢ ((𝜑 ∧ ¬ 𝐴 ∈ ℝ+) → (abs‘(ℑ‘𝐴)) ∈ ℝ+) |
19 | 2, 18 | ifclda 4559 | . . 3 ⊢ (𝜑 → if(𝐴 ∈ ℝ+, 𝐴, (abs‘(ℑ‘𝐴))) ∈ ℝ+) |
20 | 1, 19 | eqeltrid 2833 | . 2 ⊢ (𝜑 → 𝑆 ∈ ℝ+) |
21 | logcnlem.t | . . 3 ⊢ 𝑇 = ((abs‘𝐴) · (𝑅 / (1 + 𝑅))) | |
22 | 4 | logdmn0 26567 | . . . . . 6 ⊢ (𝐴 ∈ 𝐷 → 𝐴 ≠ 0) |
23 | 3, 22 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝐴 ≠ 0) |
24 | 7, 23 | absrpcld 15421 | . . . 4 ⊢ (𝜑 → (abs‘𝐴) ∈ ℝ+) |
25 | logcnlem.r | . . . . 5 ⊢ (𝜑 → 𝑅 ∈ ℝ+) | |
26 | 1rp 13004 | . . . . . 6 ⊢ 1 ∈ ℝ+ | |
27 | rpaddcl 13022 | . . . . . 6 ⊢ ((1 ∈ ℝ+ ∧ 𝑅 ∈ ℝ+) → (1 + 𝑅) ∈ ℝ+) | |
28 | 26, 25, 27 | sylancr 586 | . . . . 5 ⊢ (𝜑 → (1 + 𝑅) ∈ ℝ+) |
29 | 25, 28 | rpdivcld 13059 | . . . 4 ⊢ (𝜑 → (𝑅 / (1 + 𝑅)) ∈ ℝ+) |
30 | 24, 29 | rpmulcld 13058 | . . 3 ⊢ (𝜑 → ((abs‘𝐴) · (𝑅 / (1 + 𝑅))) ∈ ℝ+) |
31 | 21, 30 | eqeltrid 2833 | . 2 ⊢ (𝜑 → 𝑇 ∈ ℝ+) |
32 | 20, 31 | ifcld 4570 | 1 ⊢ (𝜑 → if(𝑆 ≤ 𝑇, 𝑆, 𝑇) ∈ ℝ+) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1534 ∈ wcel 2099 ≠ wne 2936 ∖ cdif 3942 ifcif 4524 class class class wbr 5142 ‘cfv 6542 (class class class)co 7414 ℂcc 11130 ℝcr 11131 0cc0 11132 1c1 11133 + caddc 11135 · cmul 11137 -∞cmnf 11270 ≤ cle 11273 / cdiv 11895 ℝ+crp 13000 (,]cioc 13351 ℑcim 15071 abscabs 15207 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-sep 5293 ax-nul 5300 ax-pow 5359 ax-pr 5423 ax-un 7734 ax-cnex 11188 ax-resscn 11189 ax-1cn 11190 ax-icn 11191 ax-addcl 11192 ax-addrcl 11193 ax-mulcl 11194 ax-mulrcl 11195 ax-mulcom 11196 ax-addass 11197 ax-mulass 11198 ax-distr 11199 ax-i2m1 11200 ax-1ne0 11201 ax-1rid 11202 ax-rnegex 11203 ax-rrecex 11204 ax-cnre 11205 ax-pre-lttri 11206 ax-pre-lttrn 11207 ax-pre-ltadd 11208 ax-pre-mulgt0 11209 ax-pre-sup 11210 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2937 df-nel 3043 df-ral 3058 df-rex 3067 df-rmo 3372 df-reu 3373 df-rab 3429 df-v 3472 df-sbc 3776 df-csb 3891 df-dif 3948 df-un 3950 df-in 3952 df-ss 3962 df-pss 3964 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-iun 4993 df-br 5143 df-opab 5205 df-mpt 5226 df-tr 5260 df-id 5570 df-eprel 5576 df-po 5584 df-so 5585 df-fr 5627 df-we 5629 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-pred 6299 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-riota 7370 df-ov 7417 df-oprab 7418 df-mpo 7419 df-om 7865 df-2nd 7988 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-er 8718 df-en 8958 df-dom 8959 df-sdom 8960 df-sup 9459 df-pnf 11274 df-mnf 11275 df-xr 11276 df-ltxr 11277 df-le 11278 df-sub 11470 df-neg 11471 df-div 11896 df-nn 12237 df-2 12299 df-3 12300 df-n0 12497 df-z 12583 df-uz 12847 df-rp 13001 df-ioc 13355 df-seq 13993 df-exp 14053 df-cj 15072 df-re 15073 df-im 15074 df-sqrt 15208 df-abs 15209 |
This theorem is referenced by: logcnlem5 26573 |
Copyright terms: Public domain | W3C validator |